Publication:
When is the range of a multiplier on a Banach algebra closed?

dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorÜlger, Ali
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Mathematics
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T23:46:15Z
dc.date.issued2006
dc.description.abstractIn this paper we prove the Theorem: Let A be a Banach algebra with a bounded approximate identity (=BAI) such that every proper closed ideal of A is contained in a proper closed ideal with a BAI. Then a multiplier T : A -> A has a closed range iff T factors as a product of an idempotent multiplier and an invertible multiplier.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue4
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume254
dc.identifier.doi10.1007/s00209-006-0003-5
dc.identifier.issn0025-5874
dc.identifier.quartileQ3
dc.identifier.scopus2-s2.0-33749645139
dc.identifier.urihttp://dx.doi.org/10.1007/s00209-006-0003-5
dc.identifier.urihttps://hdl.handle.net/20.500.14288/13939
dc.identifier.wos242407500003
dc.keywordsMultiplier
dc.keywordsAmenable algebra
dc.keywordsHerz-Figa-Talamanca algebra
dc.languageEnglish
dc.publisherSpringer
dc.sourceMathematische Zeitschrift
dc.subjectMathematics
dc.titleWhen is the range of a multiplier on a Banach algebra closed?
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-3377-8666
local.contributor.kuauthorÜlger, Ali
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe

Files