Publication: Recent advances in sustainable syngas production by catalytic CO2 reforming of ethanol and glycerol
Program
KU-Authors
KU Authors
Co-Authors
Bac, Selin
Avci, Ahmet K.
Publication Date
Language
Type
Embargo Status
Journal Title
Journal ISSN
Volume Title
Alternative Title
Abstract
This review focuses on the catalysis of ethanol and glycerol CO2 (dry) reforming to synthesis gas. Ethanol is currently utilized in the transportation network as a biomass-derived fuel that is added to refinery gasoline. Glycerol emerges as a continuously and undesirably accumulating side product of biodiesel, a trending renewable counterpart of the conventional diesel. Catalytic reforming of ethanol and glycerol with CO2 offer simultaneous valorization of a greenhouse gas with two renewable and commercially available fuels to synthesis gas, a value-added feedstock for the production of methanol, synthetic fuels and dimethyl ether. For the first time in the literature, catalysts for ethanol and glycerol dry reforming are reviewed on the basis of individual and interactive effects of active species and supports on reactant conversions, yield and composition of syngas, and catalyst stability. Discussions on the catalysts are complemented by the respective thermodynamic aspects. Strategies for promoting efficient transformation of ethanol and glycerol with CO2 into syngas are presented.
Source
Publisher
Royal Society of Chemistry (RSC)
Subject
Chemistry, Physical chemistry, Energy, Fuels, Materials Science
Citation
Has Part
Source
Sustainable Energy and Fuels
Book Series Title
Edition
DOI
10.1039/c9se00967a