Publication:
A novel training method for PHMMs

dc.contributor.coauthorAkman, Arda
dc.contributor.coauthorErgüt, Salih
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorKozat, Süleyman Serdar
dc.contributor.kuauthorÖzkan, Hüseyin
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofilePhD Student
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokid177972
dc.contributor.yokid271767
dc.date.accessioned2024-11-09T23:28:14Z
dc.date.issued2012
dc.description.abstractThis paper proposes a novel estimation algorithm for the parameters of an HMM as to best account for the observed data. In this model, in addition to the observation sequence, we have partial and noisy access to the hidden state sequence as side information. This access can be seen as “partial labeling” of the hidden states. Furthermore, we model possible mislabeling in the side information in a joint framework and derive the corresponding EM updates accordingly. In our simulations, we observe that using this side information, we considerably improve the state recognition performance, up to 70%, with respect to the “achievable margin” defined by the baseline algorithms. Moreover, our algorithm is shown to be robust to different training conditions.
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.identifier.doi10.1109/CIP.2012.6232925
dc.identifier.isbn9781-4673-1878-5
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84864651512anddoi=10.1109%2fCIP.2012.6232925andpartnerID=40andmd5=5b0c9fa640b185a18ad2e333e1741f47
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-84864651512
dc.identifier.urihttp://dx.doi.org/10.1109/CIP.2012.6232925
dc.identifier.urihttps://hdl.handle.net/20.500.14288/11854
dc.keywordsEstimation algorithm
dc.keywordsHidden state
dc.keywordsObserved data
dc.keywordsSide information
dc.keywordsState recognition
dc.keywordsTraining conditions
dc.keywordsTraining methods
dc.keywordsData processing
dc.keywordsAlgorithms
dc.languageEnglish
dc.publisherIEEE
dc.source2012 3rd International Workshop on Cognitive Information Processing, CIP 2012
dc.subjectEngineering
dc.subjectElectrical and electronics engineering
dc.titleA novel training method for PHMMs
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0002-6488-3848
local.contributor.authorid0000-0002-5539-9085
local.contributor.kuauthorKozat, Süleyman Serdar
local.contributor.kuauthorÖzkan, Hüseyin
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files