Publication:
Clinical prognosis evaluation of COVID-19 patients: an interpretable hybrid machine learning approach

dc.contributor.coauthorKocadağlı, O.
dc.contributor.coauthorGökmen, N.
dc.contributor.coauthorAktan C.
dc.contributor.departmentKUH (Koç University Hospital)
dc.contributor.departmentSchool of Medicine
dc.contributor.kuauthorBaygül, Arzu Eden
dc.contributor.kuauthorİncir, Said
dc.contributor.schoolcollegeinstituteKUH (KOÇ UNIVERSITY HOSPITAL)
dc.contributor.schoolcollegeinstituteSCHOOL OF MEDICINE
dc.date.accessioned2024-11-09T13:45:09Z
dc.date.issued2022
dc.description.abstractThis retrospective cohort study deals with evaluating severity of COVID-19 cases on the first symptoms and blood-test results of infected patients admitted to Emergency Department of Koc University Hospital (Istanbul, Turkey). To figure out remarkable hematological characteristics and risk factors in the prognosis evaluation of COVID-19 cases, the hybrid machine learning (ML) approaches integrated with feature selection procedure based Genetic Algorithms and information complexity were used in addition to the multivariate statistical analysis. Specifically, COVID-19 dataset includes demographic features, symptoms, blood test results and disease histories of total 166 inpatients with different age and gender groups. Analysis results point out that the hybrid ML methods has brought out potential risk factors on the severity of COVID-19 cases and their impacts on the prognosis evaluation, accurately.
dc.description.fulltextYES
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue1
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipN/A
dc.description.versionPublisher version
dc.description.volume70
dc.identifier.doi10.1016/j.retram.2021.103319
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03251
dc.identifier.issn2452-3186
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85118772867
dc.identifier.urihttps://doi.org/10.1016/j.retram.2021.103319
dc.keywordsArtificial intelligence
dc.keywordsClinical prognosis
dc.keywordsCOVID-19 symptoms
dc.keywordsFeature selection
dc.keywordsICOMP
dc.keywordsMachine learning
dc.keywordsSeverity of COVID-19
dc.language.isoeng
dc.publisherElsevier
dc.relation.grantnoNA
dc.relation.ispartofCurrent Research in Translational Medicine
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10033
dc.subjectRadiological findings
dc.subjectClinical features
dc.subjectCOVID-19
dc.titleClinical prognosis evaluation of COVID-19 patients: an interpretable hybrid machine learning approach
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorBaygül, Arzu Eden
local.contributor.kuauthorİncir, Said
local.publication.orgunit1SCHOOL OF MEDICINE
local.publication.orgunit1KUH (KOÇ UNIVERSITY HOSPITAL)
local.publication.orgunit2KUH (Koç University Hospital)
local.publication.orgunit2School of Medicine
relation.isOrgUnitOfPublicationf91d21f0-6b13-46ce-939a-db68e4c8d2ab
relation.isOrgUnitOfPublicationd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isOrgUnitOfPublication.latestForDiscoveryf91d21f0-6b13-46ce-939a-db68e4c8d2ab
relation.isParentOrgUnitOfPublication055775c9-9efe-43ec-814f-f6d771fa6dee
relation.isParentOrgUnitOfPublication17f2dc8e-6e54-4fa8-b5e0-d6415123a93e
relation.isParentOrgUnitOfPublication.latestForDiscovery055775c9-9efe-43ec-814f-f6d771fa6dee

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10033.pdf
Size:
1.48 MB
Format:
Adobe Portable Document Format