Publication:
Fracture toughness of thermoelectric materials

dc.contributor.coauthorLi, Guodong
dc.contributor.coauthorAn, Qi
dc.contributor.coauthorDuan, Bo
dc.contributor.coauthorBorgsmiller, Leah
dc.contributor.coauthorAl Malki, Muath
dc.contributor.coauthorAgne, Matthias
dc.contributor.coauthorZhai, Pengcheng
dc.contributor.coauthorZhang, Qingjie
dc.contributor.coauthorMorozov, Sergey I.
dc.contributor.coauthorGoddard, William A., III
dc.contributor.coauthorSnyder, G. Jeffrey
dc.contributor.departmentDepartment of Chemistry
dc.contributor.departmentDepartment of Chemistry
dc.contributor.kuauthorAydemir, Umut
dc.contributor.kuprofileFaculty Member
dc.contributor.researchcenterKUBAM (Koç University Boron and Advanced Materials Application and Research Center)
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.yokid58403
dc.date.accessioned2024-11-09T23:45:20Z
dc.date.issued2021
dc.description.abstractThe engineering applications of thermoelectric (TE) devices require TE materials possessing high TE performance and robust mechanical properties. Research on thermal and electrical transport properties of TE materials has made significant progress during the last two decades, developing TE materials on the threshold of commercial applications. However, research on mechanical strength and toughness has lagged behind, restricting application of TE materials. Mechanical failure in these materials involves multi-scale processes spanning from atomistic scale to macro scale. We have proposed an integral stress-displacement method to estimate fracture toughness from intrinsic mechanical behavior. In this review, we summarize our recent progress on fracture toughness of TE materials. This is in three parts: (1) Predicting fracture toughness of TE materials from intrinsic mechanical behavior; (2) Intrinsic mechanical behavior and underlying failure mechanism of TE materials; and (3) Nanotwin and nanocomposite strategies for enhancing the mechanical strength and fracture toughness of TE materials. These findings provide essential comprehensive understanding of fracture behavior from micro to the macro scale, laying the foundation for developing reliable TE devices for engineering applications.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipNSFC [52022074, 51772231, 51972253]
dc.description.sponsorshipHubei Provincial Natural Science Foundation of China [2020CFB202]
dc.description.sponsorshipFundamental Research Funds for the Central Universities [WUT: 2020IB001, 2020IB013, 2020III031]
dc.description.sponsorshipAct 211 Government of the Russian Federation [02.A03.21.0011]
dc.description.sponsorshipSupercomputer Simulation Laboratory of South Ural State University
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK) [118M371]
dc.description.sponsorshipNSF [CBET-2005250] This work is partially supported by the NSFC (Nos. 52022074, 51772231, 51972253), the Hubei Provincial Natural Science Foundation of China (2020CFB202), Fundamental Research Funds for the Central Universities (WUT: 2020IB001, 2020IB013, 2020III031). S.M. is thankful for the support by Act 211 Government of the Russian Federation, under No. 02.A03.21.0011 and by the Supercomputer Simulation Laboratory of South Ural State University. U.A. gratefully acknowledge the financial support provided by the Scientific and Technological Research Council of Turkey (TUB.ITAK) with grant number 118M371. W.A.G thanks NSF (CBET-2005250) for support.
dc.description.volume144
dc.identifier.doi10.1016/j.mser.2021.100607
dc.identifier.eissn1879-212X
dc.identifier.issn0927-796X
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85101500980
dc.identifier.urihttp://dx.doi.org/10.1016/j.mser.2021.100607
dc.identifier.urihttps://hdl.handle.net/20.500.14288/13818
dc.identifier.wos636450000002
dc.keywordsFracture toughness
dc.keywordsThermoelectric materials
dc.keywordsIntrinsic mechanical behavior
dc.keywordsNanotwins
dc.keywordsNanocomposites
dc.languageEnglish
dc.publisherElsevier
dc.sourceMaterials Science and Engineering R-reports
dc.subjectMaterials science, multidisciplinary
dc.subjectPhysics, applied
dc.titleFracture toughness of thermoelectric materials
dc.typeReview
dspace.entity.typePublication
local.contributor.authorid0000-0003-1164-1973
local.contributor.kuauthorAydemir, Umut
relation.isOrgUnitOfPublication035d8150-86c9-4107-af16-a6f0a4d538eb
relation.isOrgUnitOfPublication.latestForDiscovery035d8150-86c9-4107-af16-a6f0a4d538eb

Files