Publication: The greedy prepend algorithm for decision list induction
dc.contributor.coauthor | De La Maza, M. | |
dc.contributor.department | Department of Computer Engineering | |
dc.contributor.department | Department of Computer Engineering | |
dc.contributor.kuauthor | Yüret, Deniz | |
dc.contributor.kuprofile | Faculty Member | |
dc.contributor.schoolcollegeinstitute | College of Engineering | |
dc.contributor.yokid | 179996 | |
dc.date.accessioned | 2024-11-09T23:47:15Z | |
dc.date.issued | 2006 | |
dc.description.abstract | We describe a new decision list induction algorithm called the Greedy Prepend Algorithm (GPA). GPA improves on other decision list algorithms by introducing a new objective function for rule selection and a set of novel search algorithms that allow application to large scale real world problems. GPA achieves state-of-the-art classification accuracy on the protein secondary structure prediction problem in bioinformatics and the English part of speech tagging problem in computational linguistics. For both domains GPA produces a rule set that human experts find easy to interpret, a marked advantage in decision support environments. In addition, we compare GPA to other decision list induction algorithms as well as support vector machines, C4.5, naive Bayes, and a nearest neighbor method on a number of standard data sets from the UCI machine learning repository. | |
dc.description.indexedby | WoS | |
dc.description.indexedby | Scopus | |
dc.description.indexedby | PubMed | |
dc.description.openaccess | YES | |
dc.description.publisherscope | International | |
dc.description.sponsoredbyTubitakEu | N/A | |
dc.description.volume | 4263 LNCS | |
dc.identifier.doi | 10.1007/11902140_6 | |
dc.identifier.isbn | 3540-4724-28 | |
dc.identifier.isbn | 9783-5404-7242-1 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.link | https://www.scopus.com/inward/record.uri?eid=2-s2.0-33845244779&doi=10.1007%2f11902140_6&partnerID=40&md5=291f75ee6c5dbe8c03cae8adcc0d721d | |
dc.identifier.quartile | Q3 | |
dc.identifier.scopus | 2-s2.0-33845244779 | |
dc.identifier.uri | https://link.springer.com/chapter/10.1007/11902140_6 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/14084 | |
dc.identifier.wos | 243130100006 | |
dc.keywords | Algorithms | |
dc.keywords | Function evaluation | |
dc.keywords | Learning systems | |
dc.keywords | Problem solving | |
dc.keywords | Proteins | |
dc.keywords | Vectors | |
dc.keywords | Virtual reality | |
dc.keywords | Bioinformatics | |
dc.keywords | Greedy Prepend Algorithm (GPA) | |
dc.keywords | Protein secondary structures | |
dc.keywords | State-of-the-art classification accuracy | |
dc.keywords | Support vector machines (SVM) | |
dc.keywords | Decision tables | |
dc.language | English | |
dc.publisher | Springer | |
dc.source | Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | |
dc.subject | Engineering | |
dc.title | The greedy prepend algorithm for decision list induction | |
dc.type | Conference proceeding | |
dspace.entity.type | Publication | |
local.contributor.authorid | 0000-0002-7039-0046 | |
local.contributor.kuauthor | Yüret, Deniz | |
relation.isOrgUnitOfPublication | 89352e43-bf09-4ef4-82f6-6f9d0174ebae | |
relation.isOrgUnitOfPublication.latestForDiscovery | 89352e43-bf09-4ef4-82f6-6f9d0174ebae |