Publication:
Quantum heat engine with coupled superconducting resonators

dc.contributor.coauthorWilson, C. M.
dc.contributor.departmentDepartment of Physics
dc.contributor.departmentDepartment of Physics
dc.contributor.kuauthorHardal, Ali Ümit Cemal
dc.contributor.kuauthorMüstecaplıoğlu, Özgür Esat
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.yokidN/A
dc.contributor.yokid1674
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T12:25:34Z
dc.date.issued2017
dc.description.abstractWe propose a quantum heat engine composed of two superconducting transmission line resonators interacting with each other via an optomechanical-like coupling. One resonator is periodically excited by a thermal pump. The incoherently driven resonator induces coherent oscillations in the other one due to the coupling. A limit cycle, indicating finite power output, emerges in the thermodynamical phase space. The system implements an all-electrical analog of a photonic piston. Instead of mechanical motion, the power output is obtained as a coherent electrical charging in our case. We explore the differences between the quantum and classical descriptions of our system by solving the quantum master equation and classical Langevin equations. Specifically, we calculate the mean number of excitations, second-order coherence, as well as the entropy, temperature, power, and mean energy to reveal the signatures of quantum behavior in the statistical and thermodynamic properties of the system. We find evidence of a quantum enhancement in the power output of the engine at low temperatures.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue6
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipVillum Foundation
dc.description.sponsorshipLockheed Martin Chief Scientist's Office
dc.description.sponsorshipKoç Üniversitesi
dc.description.sponsorshipUniversity of Waterloo
dc.description.versionPublisher version
dc.description.volume96
dc.formatpdf
dc.identifier.doi10.1103/PhysRevE.96.062120
dc.identifier.eissn2470-0053
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR01352
dc.identifier.issn2470-0045
dc.identifier.linkhttps://doi.org/10.1103/PhysRevE.96.062120
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85039935561
dc.identifier.urihttps://hdl.handle.net/20.500.14288/1601
dc.identifier.wos418202400001
dc.keywordsDifferential equations
dc.keywordsEngines
dc.keywordsPhase space methods
dc.keywordsQuantum theory
dc.keywordsResonators
dc.keywordsSuperconducting resonators
dc.keywordsThermodynamic properties
dc.keywordsThermoelectric power
dc.keywordsCoherent oscillations
dc.keywordsElectrical charging
dc.keywordsLangevin equation
dc.keywordsMechanical motions
dc.keywordsQuantum heat engines
dc.keywordsQuantum master equations
dc.keywordsSecond order coherence
dc.languageEnglish
dc.publisherAmerican Physical Society (APS)
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/5024
dc.sourcePhysical Review E
dc.subjectPhysics
dc.titleQuantum heat engine with coupled superconducting resonators
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authoridN/A
local.contributor.authorid0000-0002-9134-3951
local.contributor.authoridN/A
local.contributor.kuauthorHardal, Ali Ümit Cemal
local.contributor.kuauthorMüstecaplıoğlu, Özgür Esat
local.contributor.kuauthorAslan, Nur
relation.isOrgUnitOfPublicationc43d21f0-ae67-4f18-a338-bcaedd4b72a4
relation.isOrgUnitOfPublication.latestForDiscoveryc43d21f0-ae67-4f18-a338-bcaedd4b72a4

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
5024.pdf
Size:
1.26 MB
Format:
Adobe Portable Document Format