Publication: Analysis of solid-state saturable absorbers with temperature dependent absorption cross-sections
Program
KU Authors
Co-Authors
Advisor
Publication Date
Language
English
Type
Journal Title
Journal ISSN
Volume Title
Abstract
We describe a comprehensive model which can be used in the continuous-wave (cw) analysis of solid-state transition metal-doped saturable absorbers, which, in addition to the commonly observed temperature dependence of the refractive index and fluorescence lifetime, also exhibit a temperature dependent absorption cross-section. By using a rate equation analysis, two coupled differential equations are derived for the beam power and the q-parameter of the pump beam. To test the validity of the model, we analyzed the cw and pulsed saturation data taken with Cr4+:forsterite crystals which are subject to these three thermal effects at 1064 nm. Data for electric field parallel to the crystal b-axis (E parallel to b) and c-axis (E parallel to c) were analyzed. Results indicate that when thermal loading effects are taken into account, better agreement is obtained between the cross-section results of the cw, and pulsed saturation data. In particular. inclusion of thermal effects reduced the fractional deviation between the average cw and pulsed cross-section values from 23% to 2% and from 34% to 29% for the E parallel to c and E parallel to b cases, respectively. In the E parallel to b case, the average absorption cross-section and the normalized strength of excited-state absorption were further determined to be 5.98 x 10(-19) cm(2) and 0.45, respectively. The presented model can be readily extended to analyze other thermal effects or other media with different energy-level schemes.
Description
Source:
Optical Materials
Publisher:
Elsevier
Keywords:
Subject
Materials science, multidisciplinary, Optics