Publication:
Design of curved composite panels for optimal dynamic response using lamination parameters

dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.kuauthorBaşdoğan, İpek
dc.contributor.kuauthorSerhat, Gökhan
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.date.accessioned2024-11-09T23:59:13Z
dc.date.issued2018
dc.description.abstractIn this paper, dynamic response of composite panels is investigated using lamination parameters as design variables. Finite element analyses are performed to observe the individual and combined effects of different panel aspect ratios, curvatures and boundary conditions on the dynamic responses. Fundamental frequency contours for curved panels are obtained in lamination parameters domain and optimal points yielding maximum values are found. Subsequently, forced dynamic analyses are carried out to calculate equivalent radiated power (ERP) for the panels under harmonic pressure excitation. ERP contours at the maximum fundamental frequency are presented. Optimal lamination parameters providing minimum ERP are determined for different excitation frequencies and their effective frequency bands are shown. The relationship between the designs optimized for maximum fundamental frequency and minimum ERP responses is investigated to study the effectiveness of the frequency maximization technique. The results demonstrate the potential of using lamination parameters technique in the design of curved composite panels for optimal dynamic response and provide valuable insight on the effect of various design parameters.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.openaccessNO
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipEuropean Union [316394] The authors would like to gratefully acknowledge the funding from European Union Seventh Framework Programme "FP7-PEOPLE-2012-ITN" under grant agreement 316394, through the Marie Curie Initial Training Network "Aerospace Multidisciplinarity Enabling DEsign Optimization (AMEDEO)".
dc.description.volume147
dc.identifier.doi10.1016/j.compositesb.2018.04.033
dc.identifier.eissn1879-1069
dc.identifier.issn1359-8368
dc.identifier.scopus2-s2.0-85045691095
dc.identifier.urihttps://doi.org/10.1016/j.compositesb.2018.04.033
dc.identifier.urihttps://hdl.handle.net/20.500.14288/15591
dc.identifier.wos437064900015
dc.keywordsOptimization
dc.keywordsCurved composite panels
dc.keywordsVibration
dc.keywordsFundamental frequency
dc.keywordsEquivalent radiated power
dc.keywordsLamination parameters
dc.keywordsMaximum fundamental-frequency
dc.keywordsForced vibration analysis
dc.keywordsPlates
dc.keywordsOptimization
dc.keywordsMaximization
dc.keywordsBehavior
dc.keywordsShells
dc.language.isoeng
dc.publisherElsevier Sci Ltd
dc.relation.ispartofComposites Part B-Engineering
dc.subjectEngineering
dc.subjectMaterials sciences
dc.subjectComposite materials
dc.titleDesign of curved composite panels for optimal dynamic response using lamination parameters
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorSerhat, Gökhan
local.contributor.kuauthorBaşdoğan, İpek
local.publication.orgunit1GRADUATE SCHOOL OF SCIENCES AND ENGINEERING
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Mechanical Engineering
local.publication.orgunit2Graduate School of Sciences and Engineering
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files