Publication:
Discriminative LIP-motion features for biometric speaker identification

dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentN/A
dc.contributor.kuauthorTekalp, Ahmet Murat
dc.contributor.kuauthorErzin, Engin
dc.contributor.kuauthorYemez, Yücel
dc.contributor.kuauthorÇetingül, Hasan Ertan
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileMaster Student
dc.contributor.otherDepartment of Electrical and Electronics Engineering
dc.contributor.otherDepartment of Computer Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokid26207
dc.contributor.yokid34503
dc.contributor.yokid107907
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T23:08:02Z
dc.date.issued2004
dc.description.abstractThis paper addresses the selection of best lip motion features for biometric open-set speaker identification. The best features are those that result in the highest discrimination of individual speakers in a population. We first detect the face region in each video frame. The lip region for each frame is then segmented following registration of successive face regions by global motion compensation. The initial lip feature vector is composed of the 2D-DCT coefficients of the optical flow vectors within the lip region at each frame. The discriminant analysis is composed of two stages. At the first stage, the most discriminative features are selected from the full set of DCT coefficients of a single lip motion frame by using a probabilistic measure that maximizes the ratio of intra-class and inter-class probabilities. At the second stage, the resulting discriminative feature vectors are interpolated and concatenated for each time instant within a neighborhood, and further analyzed by LDA to reduce dimension, this time taking into account temporal discrimination information. Experimental results of the HMM-based speaker identification system are included to demonstrate the performance.
dc.description.indexedbyScopus
dc.description.indexedbyWoS
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.volume3
dc.identifier.doi10.1109/ICIP.2004.1421480
dc.identifier.isbn0780-3855-43
dc.identifier.issn1522-4880
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-20444432705anddoi=10.1109%2fICIP.2004.1421480andpartnerID=40andmd5=de0dbcd081e18cd1f5cf1df262e45d88
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-20444432705
dc.identifier.urihttp://dx.doi.org/10.1109/ICIP.2004.1421480
dc.identifier.urihttps://hdl.handle.net/20.500.14288/9250
dc.keywordsBiometry
dc.keywordsDimensions
dc.keywordsFeature sets
dc.keywordsMean square errors
dc.keywordsDatabase systems
dc.keywordsDecision making
dc.keywordsEigenvalues and eigenfunctions
dc.keywordsErrors
dc.keywordsInterpolation
dc.keywordsMathematical models
dc.keywordsPrincipal component analysis
dc.keywordsProbability
dc.keywordsSpeech recognition
dc.languageEnglish
dc.publisherIEEE
dc.sourceProceedings - International Conference on Image Processing, ICIP
dc.subjectElectrical electronics engineering
dc.subjectComputer engineering
dc.titleDiscriminative LIP-motion features for biometric speaker identification
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0003-1465-8121
local.contributor.authorid0000-0002-2715-2368
local.contributor.authorid0000-0002-7515-3138
local.contributor.authoridN/A
local.contributor.kuauthorTekalp, Ahmet Murat
local.contributor.kuauthorErzin, Engin
local.contributor.kuauthorYemez, Yücel
local.contributor.kuauthorÇetingül, Hasan Ertan
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files