Publication:
Clinical and genetic characterization of a progressive RBL2-associated neurodevelopmental disorder

dc.contributor.departmentSchool of Medicine
dc.contributor.kuauthorAltunoğlu, Umut
dc.contributor.kuauthorKayserili, Hülya
dc.contributor.schoolcollegeinstituteSCHOOL OF MEDICINE
dc.date.accessioned2025-03-06T20:57:41Z
dc.date.issued2024
dc.description.abstractRetinoblastoma (RB) proteins are highly conserved transcriptional regulators that play important roles during development by regulating cell-cycle gene expression. RBL2 dysfunction has been linked to a severe neurodevelopmental disorder. However, to date, clinical features have only been described in six individuals carrying five biallelic predicted loss of function (pLOF) variants. To define the phenotypic effects of RBL2 mutations in detail, we identified and clinically characterized a cohort of 35 patients from 20 families carrying pLOF variants in RBL2, including fifteen new variants that substantially broaden the molecular spectrum. The clinical presentation of affected individuals is characterized by a range of neurological and developmental abnormalities. Global developmental delay and intellectual disability were uniformly observed, ranging from moderate to profound and involving lack of acquisition of key motor and speech milestones in most patients. Disrupted sleep was also evident in some patients. Frequent features included postnatal microcephaly, infantile hypotonia, aggressive behaviour, stereotypic movements, seizures, and non-specific dysmorphic features. Neuroimaging features included cerebral atrophy, white matter volume loss, corpus callosum hypoplasia and cerebellar atrophy. In parallel, we used the fruit fly, Drosophila melanogaster, to investigate how disruption of the conserved RBL2 orthologue Rbf impacts nervous system function and development. We found that Drosophila Rbf LOF mutants recapitulate several features of patients harbouring RBL2 variants, including developmental delay, alterations in head and brain morphology, locomotor defects, and perturbed sleep. Surprisingly, in addition to its known role in controlling tissue growth during development, we found that continued Rbf expression is also required in fully differentiated post-mitotic neurons for normal locomotion in Drosophila, and that adult-stage neuronal re-expression of Rbf is sufficient to rescue Rbf mutant locomotor defects. Taken together, our study provides a clinical and experimental basis to understand genotype-phenotype correlations in an RBL2-linked neurodevelopmental disorder, and suggests that restoring RBL2 expression through gene therapy approaches may ameliorate some symptoms caused by RBL2 pLOF.
dc.description.indexedbyPubMed
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.identifier.doi10.1093/brain/awae363
dc.identifier.quartileQ1
dc.identifier.urihttps://doi.org/10.1093/brain/awae363
dc.identifier.urihttps://hdl.handle.net/20.500.14288/27281
dc.keywordsDrosophila
dc.keywordsRBL2
dc.keywordsRbf
dc.keywordsCell-cycle
dc.keywordsNeurodevelopmental disorder
dc.language.isoeng
dc.publisherOxford University Press
dc.relation.ispartofBrain
dc.subjectMedicine
dc.titleClinical and genetic characterization of a progressive RBL2-associated neurodevelopmental disorder
dc.typeJournal Article
dspace.entity.typePublication
local.publication.orgunit1SCHOOL OF MEDICINE
local.publication.orgunit2School of Medicine
relation.isOrgUnitOfPublicationd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isOrgUnitOfPublication.latestForDiscoveryd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isParentOrgUnitOfPublication17f2dc8e-6e54-4fa8-b5e0-d6415123a93e
relation.isParentOrgUnitOfPublication.latestForDiscovery17f2dc8e-6e54-4fa8-b5e0-d6415123a93e

Files