Publication:
Ratios of partition functions for the log-gamma polymer

dc.contributor.coauthorGeorgiou, Nicos
dc.contributor.coauthorRassoul-Agha, Firas
dc.contributor.coauthorSeppaelaeinen, Timo
dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorYılmaz, Atilla
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Mathematics
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.yokid26605
dc.date.accessioned2024-11-09T12:12:26Z
dc.date.issued2015
dc.description.abstractWe introduce a random walk in random environment associated to an underlying directed polymer model in 1 + 1 dimensions. This walk is the positive temperature counterpart of the competition interface of percolation and arises as the limit of quenched polymer measures. We prove this limit for the exactly solvable log-gamma polymer, as a consequence of almost sure limits of ratios of partition functions. These limits of ratios give the Busemann functions of the log-gamma polymer, and furnish centered cocycles that solve a variational formula for the limiting free energy. Limits of ratios of point-to-point and point-to-line partition functions manifest a duality between tilt and velocity that comes from quenched large deviations under polymer measures. In the log-gamma case, we identify a family of ergodic invariant distributions for the random walk in random environment.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue5
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipNSF
dc.description.sponsorshipWisconsin Alumni Research Foundation
dc.description.sponsorshipEuropean Union FP7 Grant
dc.description.versionPublisher version
dc.description.volume43
dc.formatpdf
dc.identifier.doi10.1214/14-AOP933
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR00348
dc.identifier.issn0091-1798
dc.identifier.linkhttps://doi.org/10.1214/14-AOP933
dc.identifier.quartileQ1
dc.identifier.urihttps://hdl.handle.net/20.500.14288/1163
dc.identifier.wos362146900003
dc.keywordsRandom environment
dc.keywordsCompetition interfaces
dc.keywordsWhittaker functions
dc.keywordsDirected polymers
dc.keywordsRandom potentials
dc.keywordsRandom-walks
dc.keywordsFree-energy
dc.keywordsDisorder
dc.languageEnglish
dc.publisherInstitute of Mathematical Statistics (IMS)
dc.relation.grantnoDMS-07-47758
dc.relation.grantnoDMS-10-03651
dc.relation.grantnoDMS-13-06777
dc.relation.grantnoPCIG11-GA-2012-322078
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/1368
dc.sourceAnnals of Probability
dc.subjectMathematics
dc.subjectStatistics and probability
dc.titleRatios of partition functions for the log-gamma polymer
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorYılmaz, Atilla
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
1368.pdf
Size:
2.21 MB
Format:
Adobe Portable Document Format