Publication:
Photonic neural networks at the edge of spatiotemporal chaos in multimode fibers

dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorTeğin, Uğur
dc.contributor.kuauthorKesgin, Bahadır Utku
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2025-05-22T10:33:59Z
dc.date.available2025-05-22
dc.date.issued2025
dc.description.abstractOptical computing has gained significant attention as a potential solution to the growing computational demands of machine learning, particularly for tasks requiring large-scale data processing and high energy efficiency. Optical systems offer promising alternatives to digital neural networks by exploiting light's parallelism. This study explores a photonic neural network design using spatiotemporal chaos within graded-index multimode fibers to improve machine learning performance. Through numerical simulations and experiments, we show that chaotic light propagation in multimode fibers enhances data classification accuracy across domains, including biomedical imaging, fashion, and satellite geospatial analysis. This chaotic optical approach enables high-dimensional transformations, amplifying data separability and differentiation for greater accuracy. Fine-tuning parameters such as pulse peak power optimizes the reservoir's chaotic properties, highlighting the need for careful calibration. These findings underscore the potential of chaos-based nonlinear photonic neural networks to advance optical computing in machine learning, paving the way for efficient, scalable architectures.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.openaccessGold OA
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBIdot;TAK) [123F171]
dc.description.versionPublished Version
dc.identifier.doi10.1515/nanoph-2024-0593
dc.identifier.eissn2192-8614
dc.identifier.embargoNo
dc.identifier.filenameinventorynoIR06194
dc.identifier.issn2192-8606
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85217762169
dc.identifier.urihttps://doi.org/10.1515/nanoph-2024-0593
dc.identifier.urihttps://hdl.handle.net/20.500.14288/29314
dc.identifier.wos001415747200001
dc.keywordsOptical computing
dc.keywordsNonlinear optics
dc.keywordsOptical fibers
dc.language.isoeng
dc.publisherWalter De Gruyter
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofNanophotonics
dc.relation.openaccessYes
dc.rightsCC BY (Attribution)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectScience and technology
dc.subjectMaterials science
dc.subjectOptics
dc.subjectPhysics
dc.titlePhotonic neural networks at the edge of spatiotemporal chaos in multimode fibers
dc.typeJournal Article
dspace.entity.typePublication
person.familyNameTeğin
person.familyNameKesgin
person.givenNameUğur
person.givenNameBahadır Utku
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files