Publication:
Programmable self-organization of heterogeneous microrobot collectives

Placeholder

Organizational Units

Program

KU-Authors

KU Authors

Co-Authors

Ceron, Steven
Gardi, Gaurav
Petersen, Kirstin

Advisor

Publication Date

2023

Language

en

Type

Journal article

Journal Title

Journal ISSN

Volume Title

Abstract

At the microscale, coupled physical interactions between collectives of agents can be exploited to enable self-organization. Past systems typically consist of identical agents; however, heterogeneous agents can exhibit asymmetric pairwise interactions which can be used to generate more diverse patterns of self-organization. Here, we study the effect of size heterogeneity in microrobot collectives composed of circular, magnetic microdisks on a fluid-air interface. Each microrobot spins or oscillates about its center axis in response to an external oscillating magnetic field, in turn producing local magnetic, hydrodynamic, and capillary forces that enable diverse collective behaviors. We demonstrate through physical experiments and simulations that the heterogeneous collective can exploit the differences in microrobot size to enable programmable self-organization, density, morphology, and interaction with external passive objects. Specifically, we can control the level of self-organization by microrobot size, enable organized aggregation, dispersion, and locomotion, change the overall shape of the collective from circular to ellipse, and cage or expel objects. We characterize the fundamental self-organization behavior across a parameter space of magnetic field frequency, relative disk size, and relative populations; we replicate the behavior through a physical model and a swarming coupled oscillator model to show that the dominant effect stems from asymmetric interactions between the different-sized disks. Our work furthers insights into self-organization in heterogeneous microrobot collectives and moves us closer to the goal of applying such collectives to programmable self-assembly and active matter.

Description

Source:

Proceedings of the National Academy of Sciences of the United States of America

Publisher:

National Academy of Sciences

Keywords:

Subject

Multidisciplinary sciences

Citation

Endorsement

Review

Supplemented By

Referenced By

Copy Rights Note

0

Views

0

Downloads

View PlumX Details