Publication:
Shape anisotropy-governed locomotion of surface microrollers on vessel-like microtopographies against physiological flows

dc.contributor.coauthorBozüyük, Uğur
dc.contributor.coauthorAlapan, Yunus
dc.contributor.coauthorAghakhani, Amirreza
dc.contributor.coauthorYunusa, Muhammad
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorSitti, Metin
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Mechanical Engineering
dc.contributor.schoolcollegeinstituteSchool of Medicine
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid297104
dc.date.accessioned2024-11-09T12:26:17Z
dc.date.issued2021
dc.description.abstractSurface microrollers are promising microrobotic systems for controlled navigation in the circulatory system thanks to their fast speeds and decreased flow velocities at the vessel walls. While surface propulsion on the vessel walls helps minimize the effect of strong fluidic forces, three-dimensional (3D) surface microtopography, comparable to the size scale of a microrobot, due to cellular morphology and organization emerges as a major challenge. Here, we show that microroller shape anisotropy determines the surface locomotion capability of microrollers on vessel-like 3D surface microtopographies against physiological flow conditions. The isotropic (single, 8.5 μm diameter spherical particle) and anisotropic (doublet, two 4 μm diameter spherical particle chain) magnetic microrollers generated similar translational velocities on flat surfaces, whereas the isotropic microrollers failed to translate on most of the 3D-printed vessel-like microtopographies. The computational fluid dynamics analyses revealed larger flow fields generated around isotropic microrollers causing larger resistive forces near the microtopographies, in comparison to anisotropic microrollers, and impairing their translation. The superior surface-rolling capability of the anisotropic doublet microrollers on microtopographical surfaces against the fluid flow was further validated in a vessel-on-a-chip system mimicking microvasculature. The findings reported here establish the design principles of surface microrollers for robust locomotion on vessel walls against physiological flows.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue13
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipEuropean Union (EU)
dc.description.sponsorshipHorizon 2020
dc.description.sponsorshipEuropean Research Council (ERC)
dc.description.sponsorshipAdvanced Grant Soft-bodied Miniature Mobile Robots
dc.description.sponsorshipSoMMoR Project
dc.description.sponsorshipMax Planck Society
dc.description.versionPublisher version
dc.description.volume118
dc.formatpdf
dc.identifier.doi10.1073/pnas.2022090118
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR02807
dc.identifier.issn0027-8424
dc.identifier.linkhttps://doi.org/10.1073/pnas.2022090118
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85102961782
dc.identifier.urihttps://hdl.handle.net/20.500.14288/1669
dc.identifier.wos637394200055
dc.keywordsCirculatory system
dc.keywordsMedical microrobotics
dc.keywordsMicrofluidics
dc.keywordsSurface rollers
dc.keywordsVessel microtopography
dc.languageEnglish
dc.publisherNational Academy of Sciences
dc.relation.grantno834531
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9458
dc.sourceProceedings of the National Academy of Sciences of the United States of America
dc.subjectMultidisciplinary sciences
dc.titleShape anisotropy-governed locomotion of surface microrollers on vessel-like microtopographies against physiological flows
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0001-8249-3854
local.contributor.kuauthorSitti, Metin
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9458.pdf
Size:
2.19 MB
Format:
Adobe Portable Document Format