Publication:
EEG-like signals can be synthesized from surface representations of single motor units of facial muscles

dc.contributor.departmentSchool of Medicine
dc.contributor.departmentGraduate School of Health Sciences
dc.contributor.kuauthorTürker, Kemal Sıtkı
dc.contributor.kuauthorUngan, Pekcan
dc.contributor.kuauthorYılmaz, Gizem
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF HEALTH SCIENCES
dc.contributor.schoolcollegeinstituteSCHOOL OF MEDICINE
dc.date.accessioned2024-11-09T23:54:49Z
dc.date.issued2018
dc.description.abstractElectrodes for recording electroencephalogram (EEG) are placed on or around cranial muscles; hence, their electrical activity may contaminate the EEG signal even at rest conditions. Due to its role in maintaining mandibular posture, tonic activity of temporalis muscle interferes with the EEG signal particularly at fronto-temporal locations at single motor unit (SMU) level. By obtaining surface representation of a motor unit, we can evaluate its interference in EEG and if we could sum surface representations of several tonically active motor units, we could estimate the overall myogenic contamination in EEG. Therefore, in this study, we followed re-composition (RC) approach and generated EEG-like artefact model using surface representations of single motor units (RC). Furthermore, we compared signal characteristics of RC signals with simultaneously recorded EEG signal at different locations in terms of power spectral density and coherence. First, we found that RC signal represented the power spectral distribution of an EMG signal. Second, RC signal reflected the discharge rate of a SMU giving the greatest surface representation amplitude and strongest interference appeared as distinguishable frequency peak on RC power spectra. Moreover, for strong interferences, RC also contaminated the EEG at F7 and other EEG electrodes. These findings are important to illustrate the susceptibility of EEG signal to myogenic artefacts even at rest and the research using EEG coherence comparisons should consider muscle activity while drawing conclusions about neuronal interactions and oscillations.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue4
dc.description.openaccessNO
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume236
dc.identifier.doi10.1007/s00221-018-5194-6
dc.identifier.eissn1432-1106
dc.identifier.issn0014-4819
dc.identifier.scopus2-s2.0-85044918805
dc.identifier.urihttps://doi.org/10.1007/s00221-018-5194-6
dc.identifier.urihttps://hdl.handle.net/20.500.14288/15263
dc.identifier.wos429341400009
dc.keywordsSingle motor unit
dc.keywordsEMG
dc.keywordsEEG
dc.keywordsMyogenic artefacts
dc.keywordsCoherence
dc.keywordsPower
dc.keywordsScalp electrical recordings
dc.keywordsHuman temporalis muscle
dc.keywordsEMG contamination
dc.keywordsGamma-band
dc.keywordsSensorimotor cortex
dc.keywordsCoherence
dc.keywordsNeurofeedback
dc.keywordsOscillations
dc.keywordsElectromyograms
dc.keywordsDecomposition
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofExperimental Brain Research
dc.subjectNeurosciences
dc.titleEEG-like signals can be synthesized from surface representations of single motor units of facial muscles
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorYılmaz, Gizem
local.contributor.kuauthorUngan, Pekcan
local.contributor.kuauthorTürker, Kemal Sıtkı
local.publication.orgunit1GRADUATE SCHOOL OF HEALTH SCIENCES
local.publication.orgunit1SCHOOL OF MEDICINE
local.publication.orgunit2School of Medicine
local.publication.orgunit2Graduate School of Health Sciences
relation.isOrgUnitOfPublicationd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isOrgUnitOfPublication2f870f28-12c9-4b28-9465-b91a69c1d48c
relation.isOrgUnitOfPublication.latestForDiscoveryd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isParentOrgUnitOfPublication4c75e0a5-ca7f-4443-bd78-1b473d4f6743
relation.isParentOrgUnitOfPublication17f2dc8e-6e54-4fa8-b5e0-d6415123a93e
relation.isParentOrgUnitOfPublication.latestForDiscovery4c75e0a5-ca7f-4443-bd78-1b473d4f6743

Files