Publication:
Role of lignin on microstructure, mechanical properties and flame retardancy of nanocellulose-based composite hydrogels

dc.contributor.coauthorKaynak, Elif
dc.contributor.departmentDepartment of Chemical and Biological Engineering
dc.contributor.departmentKUBAM (Koç University Boron and Advanced Materials Application and Research Center)
dc.contributor.kuauthorPhD Student, Turhan, Emine Ayşe
dc.contributor.kuauthorPhD Student, Sarıoğlu, Ebru
dc.contributor.kuauthorFaculty Member, Şenses, Erkan
dc.contributor.kuauthorPhD Student, Özkan, Aybüke
dc.contributor.kuauthorUndergraduate Student, Mıhlayanlar, Ezgi
dc.contributor.kuauthorMaster Student, Berlu, Paul
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteResearch Center
dc.date.accessioned2025-09-10T04:56:47Z
dc.date.available2025-09-09
dc.date.issued2025
dc.description.abstractFlame-retardant composite hydrogels provide significant advantages over conventional fire suppressants due to their high water retention, char-forming ability, and mechanical adaptability. However, the current formulations mostly rely on synthetic polymers or nanoparticles which restricts their large-scale application and reduces sustainability. In this work, we developed lignin-incorporated dynamically crosslinked cellulose nanocrystal (CNC) hydrogels and systematically investigated the interrelation between microstructure, rheological behavior, thermal properties, and flame-retardant performance. The incorporation of lignin at moderate concentrations enhanced hydrogen bonding, resulting in a denser and more homogeneous hydrogel network with reduced mesh size. The resulting elastic network enhanced water retention during burning, promoting flame retardancy via substrate cooling and fuel dilution effects. Additionally, lignin facilitated the formation of a compact glassy char layer, effectively serving as a heat and oxygen barrier. Thermal decomposition of dried CNC films resulted in 8.6 % residue at 700 degrees C, whereas CNC-lignin-borax composites exhibited a significant increase in char yield, reaching 70.5 %. The optimal lignin composition extended burn-through time of wood to 12 min-71 % and 33 % longer than uncoated and neat CNC samples. Our findings highlight the potential of CNC-borax-lignin hydrogels as biorenewable environmentally friendly coatings with superior flame-retardant properties, offering a sustainable approach to fire prevention in wood-based materials.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.openaccessGold OA
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipThe 1001 Program of The Scientific and Technological Research Council of Turkey (TÜBİTAK) [222Z106]
dc.description.versionPublished Version
dc.description.volume311
dc.identifier.doi10.1016/j.ijbiomac.2025.144007
dc.identifier.eissn1879-0003
dc.identifier.embargoNo
dc.identifier.filenameinventorynoIR06403
dc.identifier.issn0141-8130
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-105004411117
dc.identifier.urihttps://doi.org/10.1016/j.ijbiomac.2025.144007
dc.identifier.urihttps://hdl.handle.net/20.500.14288/30195
dc.identifier.wos001510915600001
dc.keywordsCellulose nanocrystals (CNC)
dc.keywordsLignin
dc.keywordsBorax
dc.keywordsFlame-retardant
dc.keywordsHydrogel
dc.keywordsDynamic covalent bond
dc.keywordsFire prevention
dc.language.isoeng
dc.publisherElsevier
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofInternational journal of biological macromolecules
dc.relation.openaccessYes
dc.rightsCC BY (Attribution)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectBiochemistry
dc.subjectChemistry
dc.subjectPolymer science
dc.subjectMolecular biology
dc.titleRole of lignin on microstructure, mechanical properties and flame retardancy of nanocellulose-based composite hydrogels
dc.typeJournal Article
dspace.entity.typePublication
relation.isOrgUnitOfPublicationc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isOrgUnitOfPublication18ca48f8-87fb-4dc5-9214-0c73c33acdf9
relation.isOrgUnitOfPublication.latestForDiscoveryc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublicationd437580f-9309-4ecb-864a-4af58309d287
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IR06403.pdf
Size:
11.09 MB
Format:
Adobe Portable Document Format