Publication:
Towards generalizable place name recognition systems: analysis and enhancement of NER systems on English news from India

dc.contributor.departmentDepartment of Sociology
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorAkdemir, Arda
dc.contributor.kuauthorHürriyetoğlu, Ali
dc.contributor.kuauthorYörük, Erdem
dc.contributor.kuauthorGürel, Burak
dc.contributor.kuauthorYoltar, Çağrı
dc.contributor.kuauthorYüret, Deniz
dc.contributor.kuprofileResearcher
dc.contributor.kuprofileTeaching Faculty
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileResearcher
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Sociology
dc.contributor.otherDepartment of Computer Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Social Sciences and Humanities
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokidN/A
dc.contributor.yokidN/A
dc.contributor.yokid28982
dc.contributor.yokid219277
dc.contributor.yokidN/A
dc.contributor.yokid179996
dc.date.accessioned2024-11-09T11:42:47Z
dc.date.issued2018
dc.description.abstractPlace name recognition is one of the key tasks in Information Extraction. In this paper, we tackle this task in English News from India. We first analyze the results obtained by using available tools and corpora and then train our own models to obtain better results. Most of the previous work done on entity recognition for English makes use of similar corpora for both training and testing. Yet we observe that the performance drops significantly when we test the models on different datasets. For this reason, we have trained various models using combinations of several corpora. Our results show that training models using combinations of several corpora improves the relative performance of these models but still more research on this area is necessary to obtain place name recognizers that generalize to any given dataset.
dc.description.fulltextYES
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipEuropean Research Council
dc.description.sponsorshipEmergingWelfare
dc.description.sponsorshipHorizon 2020
dc.description.sponsorshipERC-STG
dc.description.versionAuthor's final manuscript
dc.formatpdf
dc.identifier.doi10.1145/3281354.3281363
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR01258
dc.identifier.isbn978-1-4503-6034-0
dc.identifier.linkhttps://doi.org/10.1145/3281354.3281363
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85061824529
dc.identifier.urihttps://hdl.handle.net/20.500.14288/255
dc.keywordsPlace name recognition
dc.keywordsEntity extraction
dc.keywordsNamed entity recognition
dc.keywordsNatural language processing
dc.keywordsMachine learning
dc.languageEnglish
dc.publisherAssociation for Computing Machinery (ACM)
dc.relation.grantno714868
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/7427
dc.sourceProceedings of the 12th Workshop on Geographic Information Retrieval
dc.subjectInformation systems
dc.subjectComputing methodologies
dc.titleTowards generalizable place name recognition systems: analysis and enhancement of NER systems on English news from India
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authoridN/A
local.contributor.authoridN/A
local.contributor.authorid0000-0002-4882-0812
local.contributor.authorid0000-0002-1666-8748
local.contributor.authoridN/A
local.contributor.authorid0000-0002-7039-0046
local.contributor.kuauthorAkdemir, Arda
local.contributor.kuauthorHürriyetoğlu, Ali
local.contributor.kuauthorYörük, Erdem
local.contributor.kuauthorGürel, Burak
local.contributor.kuauthorYoltar, Çağrı
local.contributor.kuauthorYüret, Deniz
relation.isOrgUnitOfPublication10f5be47-fab1-42a1-af66-1642ba4aff8e
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery10f5be47-fab1-42a1-af66-1642ba4aff8e

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
7427.pdf
Size:
510.55 KB
Format:
Adobe Portable Document Format