Publication: MOF-derived nanocrystalline ZnO with controlled orientation and photocatalytic activity
dc.contributor.coauthor | Esmat, Mohamed | |
dc.contributor.coauthor | Fukata, Naoki | |
dc.contributor.coauthor | Ide, Yusuke | |
dc.contributor.coauthor | Hanaor, Dorian A.H. | |
dc.contributor.coauthor | Assadi, M. Hussein N. | |
dc.contributor.department | Department of Chemistry | |
dc.contributor.kuauthor | Doustkhah, Esmail | |
dc.contributor.kuprofile | Researcher | |
dc.contributor.other | Department of Chemistry | |
dc.contributor.researchcenter | Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM) | |
dc.contributor.schoolcollegeinstitute | College of Sciences | |
dc.date.accessioned | 2024-11-09T23:30:19Z | |
dc.date.issued | 2022 | |
dc.description.abstract | We show here that MOF-5, a sample Zn-based MOF, can uniquely transform into distinct zinc oxide nanostructures. Inspired by the interconversion synthesis of zeolites, we converted MOF-5 into nanocrystalline ZnO. We found the conversion of MOF-5 into ZnO to be tunable and straightforward simply by controlling the treatment temperature and choosing an appropriate structure-directing agent (SDA). Refined X-ray diffraction (XRD) patterns showed that a synthesis temperature of 180 °C (sample ZnO-180) was optimal for achieving high crystallinity. We examined ZnO-180 with high-resolution transmission electron microscopy (HRTEM), which confirmed that the samples were made of individual crystallites grown along the c-axis, or the (001) direction, thus exposing lower energy surfaces and corroborating the XRD pattern and the molecular dynamics calculations. Further investigations revealed that the obtained ZnO at 180 °C has a superior photocatalytic activity in degrading methylene blue to other ZnO nanostructures obtained at lower temperatures. | |
dc.description.indexedby | WoS | |
dc.description.indexedby | Scopus | |
dc.description.indexedby | PubMed | |
dc.description.openaccess | YES | |
dc.description.publisherscope | International | |
dc.description.sponsorship | The authors gratefully acknowledge the funding of this project by computing time provided by the Paderborn Center for Parallel Computing (PC2). E.D. acknowledges the Japan Society for the Promotion of Science (JSPS) for providing the JSPS standard postdoctoral fellowship. | |
dc.description.volume | 303 | |
dc.identifier.doi | 10.1016/j.chemosphere.2022.134932 | |
dc.identifier.issn | 0045-6535 | |
dc.identifier.link | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85130525781&doi=10.1016%2fj.chemosphere.2022.134932&partnerID=40&md5=4b6a7cdedefa9b44230e356e6424805a | |
dc.identifier.quartile | Q1 | |
dc.identifier.scopus | 2-s2.0-85130525781 | |
dc.identifier.uri | http://dx.doi.org/10.1016/j.chemosphere.2022.134932 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/12211 | |
dc.identifier.wos | 998999700004 | |
dc.keywords | Metal-organic framework | |
dc.keywords | Single-crystal ZnO | |
dc.keywords | Crystal planes | |
dc.keywords | Photocatalytic degradation | |
dc.keywords | Nanoarchitecture control | |
dc.language | English | |
dc.publisher | Elsevier Ltd | |
dc.source | Chemosphere | |
dc.subject | Environmental engineering | |
dc.subject | Public health | |
dc.subject | Environmental and occupational health | |
dc.title | MOF-derived nanocrystalline ZnO with controlled orientation and photocatalytic activity | |
dc.type | Journal Article | |
dspace.entity.type | Publication | |
local.contributor.authorid | 0000-0003-1459-1756 | |
local.contributor.kuauthor | Doustkhah, Esmail | |
relation.isOrgUnitOfPublication | 035d8150-86c9-4107-af16-a6f0a4d538eb | |
relation.isOrgUnitOfPublication.latestForDiscovery | 035d8150-86c9-4107-af16-a6f0a4d538eb |