Publication:
MOF-derived nanocrystalline ZnO with controlled orientation and photocatalytic activity

dc.contributor.coauthorEsmat, Mohamed
dc.contributor.coauthorFukata, Naoki
dc.contributor.coauthorIde, Yusuke
dc.contributor.coauthorHanaor, Dorian A.H.
dc.contributor.coauthorAssadi, M. Hussein N.
dc.contributor.departmentDepartment of Chemistry
dc.contributor.kuauthorDoustkhah, Esmail
dc.contributor.kuprofileResearcher
dc.contributor.otherDepartment of Chemistry
dc.contributor.researchcenterKoç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM)
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T23:30:19Z
dc.date.issued2022
dc.description.abstractWe show here that MOF-5, a sample Zn-based MOF, can uniquely transform into distinct zinc oxide nanostructures. Inspired by the interconversion synthesis of zeolites, we converted MOF-5 into nanocrystalline ZnO. We found the conversion of MOF-5 into ZnO to be tunable and straightforward simply by controlling the treatment temperature and choosing an appropriate structure-directing agent (SDA). Refined X-ray diffraction (XRD) patterns showed that a synthesis temperature of 180 °C (sample ZnO-180) was optimal for achieving high crystallinity. We examined ZnO-180 with high-resolution transmission electron microscopy (HRTEM), which confirmed that the samples were made of individual crystallites grown along the c-axis, or the (001) direction, thus exposing lower energy surfaces and corroborating the XRD pattern and the molecular dynamics calculations. Further investigations revealed that the obtained ZnO at 180 °C has a superior photocatalytic activity in degrading methylene blue to other ZnO nanostructures obtained at lower temperatures.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsorshipThe authors gratefully acknowledge the funding of this project by computing time provided by the Paderborn Center for Parallel Computing (PC2). E.D. acknowledges the Japan Society for the Promotion of Science (JSPS) for providing the JSPS standard postdoctoral fellowship.
dc.description.volume303
dc.identifier.doi10.1016/j.chemosphere.2022.134932
dc.identifier.issn0045-6535
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85130525781&doi=10.1016%2fj.chemosphere.2022.134932&partnerID=40&md5=4b6a7cdedefa9b44230e356e6424805a
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85130525781
dc.identifier.urihttp://dx.doi.org/10.1016/j.chemosphere.2022.134932
dc.identifier.urihttps://hdl.handle.net/20.500.14288/12211
dc.identifier.wos998999700004
dc.keywordsMetal-organic framework
dc.keywordsSingle-crystal ZnO
dc.keywordsCrystal planes
dc.keywordsPhotocatalytic degradation
dc.keywordsNanoarchitecture control
dc.languageEnglish
dc.publisherElsevier Ltd
dc.sourceChemosphere
dc.subjectEnvironmental engineering
dc.subjectPublic health
dc.subjectEnvironmental and occupational health
dc.titleMOF-derived nanocrystalline ZnO with controlled orientation and photocatalytic activity
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0003-1459-1756
local.contributor.kuauthorDoustkhah, Esmail
relation.isOrgUnitOfPublication035d8150-86c9-4107-af16-a6f0a4d538eb
relation.isOrgUnitOfPublication.latestForDiscovery035d8150-86c9-4107-af16-a6f0a4d538eb

Files