Publication:
Micro- and nanofabrication of dynamic hydrogels with multichannel information

dc.contributor.coauthorZhang, Mingchao
dc.contributor.coauthorLee, Yohan
dc.contributor.coauthorZheng, Zhiqiang
dc.contributor.coauthorKhan, Muhammad Turab Ali
dc.contributor.coauthorLyu, Xianglong
dc.contributor.coauthorByun, Junghwan
dc.contributor.coauthorGiessen, Harald
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorSitti, Metin
dc.contributor.otherDepartment of Mechanical Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteSchool of Medicine
dc.date.accessioned2024-12-29T09:40:42Z
dc.date.issued2023
dc.description.abstractCreating micro/nanostructures containing multi-channel information within responsive hydrogels presents exciting opportunities for dynamically changing functionalities. However, fabricating these structures is immensely challenging due to the soft and dynamic nature of hydrogels, often resulting in unintended structural deformations or destruction. Here, we demonstrate that dehydrated hydrogels, treated by a programmable femtosecond laser, can allow for a robust fabrication of micro/nanostructures. The dehydration enhances the rigidity of the hydrogels and temporarily locks the dynamic behaviours, significantly promoting their structural integrity during the fabrication process. By utilizing versatile dosage domains of the femtosecond laser, we create micro-grooves on the hydrogel surface through the use of a high-dosage mode, while also altering the fluorescent intensity within the rest of the non-ablated areas via a low-dosage laser. In this way, we rationally design a pixel unit containing three-channel information: structural color, polarization state, and fluorescent intensity, and encode three complex image information sets into these channels. Distinct images at the same location were simultaneously printed onto the hydrogel, which can be observed individually under different imaging modes without cross-talk. Notably, the recovered dynamic responsiveness of the hydrogel enables a multi-information-encoded surface that can sequentially display different information as the temperature changes.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue1
dc.description.openaccessAll Open Access
dc.description.openaccessGold Open Access
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorsFunding text 1: The authors thank Anitha Shiva, Devin Sheehan, Nagaraj Krishna-Subbaiah for their technical assistance. This work was funded by the Max Planck Society, Alexander Von Humboldt Foundation (M. Z., Y. L.), Deutsche Forschungsgemeinschaft, European Research Council (ERC) Advanced Grant SoMMoR project with grant no. 834531 (M. S.), Bundesministerium für Bildung und Forschung, and Carl-Zeiss Stiftung (H. G.). Also, this research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1A6A3A14043838) (Y. L.). ; Funding text 2: The authors thank Anitha Shiva, Devin Sheehan, Nagaraj Krishna-Subbaiah for their technical assistance. This work was funded by the Max Planck Society, Alexander Von Humboldt Foundation (M. Z., Y. L.), Deutsche Forschungsgemeinschaft, European Research Council (ERC) Advanced Grant SoMMoR project with grant no. 834531 (M. S.), Bundesministerium für Bildung und Forschung, and Carl-Zeiss Stiftung (H. G.). Also, this research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1A6A3A14043838) (Y. L.).
dc.description.volume14
dc.identifier.doi10.1038/s41467-023-43921-9
dc.identifier.eissn2041-1723
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85179360196
dc.identifier.urihttps://doi.org/10.1038/s41467-023-43921-9
dc.identifier.urihttps://hdl.handle.net/20.500.14288/23389
dc.identifier.wos1142897900019
dc.keywordsHydrogel
dc.keywordsNanomaterial
dc.languageen
dc.publisherNature Research
dc.relation.grantnoAnitha Shiva
dc.relation.grantnoAlexander von Humboldt-Stiftung, AvH
dc.relation.grantnoEuropean Research Council, ERC, (834531)
dc.relation.grantnoDeutsche Forschungsgemeinschaft, DFG
dc.relation.grantnoBundesministerium für Bildung und Forschung, BMBF
dc.relation.grantnoMinistry of Education, MOE, (2021R1A6A3A14043838)
dc.relation.grantnoNational Research Foundation of Korea, NRF
dc.relation.grantnoMax-Planck-Gesellschaft, MPG
dc.sourceNature Communications
dc.subjectPhoton polymerization
dc.subject3D printing
dc.subjectLithography
dc.titleMicro- and nanofabrication of dynamic hydrogels with multichannel information
dc.typeJournal article
dspace.entity.typePublication
local.contributor.kuauthorSitti, Metin
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36

Files