Publication:
Toward detecting the zone of elite tennis players through wearable technology

dc.contributor.coauthorHavlucu, Hayati
dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Psychology
dc.contributor.departmentDepartment of Media and Visual Arts
dc.contributor.kuauthorAkgün, Barış
dc.contributor.kuauthorEskenazi, Terry
dc.contributor.kuauthorCoşkun, Aykut
dc.contributor.kuauthorÖzcan, Oğuzhan
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Psychology
dc.contributor.otherDepartment of Media and Visual Arts
dc.contributor.researchcenterKU Arçelik Research Center for Creative Industries (KUAR) / KU Arçelik Yaratıcı Endüstriler Uygulama ve Araştırma Merkezi (KUAR)
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteCollege of Social Sciences and Humanities
dc.contributor.yokid258784
dc.contributor.yokid258780
dc.contributor.yokid165306
dc.contributor.yokid12532
dc.date.accessioned2024-11-09T11:46:31Z
dc.date.issued2022
dc.description.abstractWearable devices fall short in providing information other than physiological metrics despite athletes' demand for psychological feedback. To address this, we introduce a preliminary exploration to track psychological states of athletes based on commercial wearable devices, coach observations and machine learning. Our system collects Inertial Measuring Unit data from tennis players, while their coaches provide labels on their psychological states. A recurrent neural network is then trained to predict coach labels from sensor data. We test our approach by predicting being in the zone, a psychological state of optimal performance. We conduct two experimental games with two elite coaches and four professional players for evaluation. Our learned models achieve above 85% test accuracy, implying that our approach could be utilized to predict the zone at relatively low cost. Based on these findings, we discuss design implications and feasibility of this approach by contextualizing it in a real-life scenario.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipN/A
dc.description.versionPublisher version
dc.description.volume4
dc.formatpdf
dc.identifier.doi10.3389/fspor.2022.939641
dc.identifier.eissn2624-9367
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03811
dc.identifier.linkhttps://doi.org/10.3389/fspor.2022.939641
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85133540828
dc.identifier.urihttps://hdl.handle.net/20.500.14288/527
dc.identifier.wos820034300001
dc.keywordsSports
dc.keywordsPsychological states
dc.keywordsDeep learning
dc.keywordsFlow state
dc.keywordsMachine learning
dc.languageEnglish
dc.publisherFrontiers
dc.relation.grantnoNA
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10664
dc.sourceFrontiers in Sports and Active Living
dc.subjectSport sciences
dc.titleToward detecting the zone of elite tennis players through wearable technology
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-4079-6889
local.contributor.authorid0000-0001-6777-0753
local.contributor.authorid0000-0002-0859-585X
local.contributor.authorid0000-0002-4410-3955
local.contributor.kuauthorAkgün, Barış
local.contributor.kuauthorEskenazi, Terry
local.contributor.kuauthorCoşkun, Aykut
local.contributor.kuauthorÖzcan, Oğuzhan
relation.isOrgUnitOfPublicationd5fc0361-3a0a-4b96-bf2e-5cd6b2b0b08c
relation.isOrgUnitOfPublication483fa792-2b89-4020-9073-eb4f497ee3fd
relation.isOrgUnitOfPublication.latestForDiscovery483fa792-2b89-4020-9073-eb4f497ee3fd

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10664.pdf
Size:
973.03 KB
Format:
Adobe Portable Document Format