Publication:
Text detection and recognition by using CNNs in the Austro-Hungarian historical military mapping survey

dc.contributor.departmentDepartment of History
dc.contributor.departmentN/A
dc.contributor.departmentDepartment of History
dc.contributor.kuauthorKabadayı, Mustafa Erdem
dc.contributor.kuauthorCan, Yekta Said
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileResearcher
dc.contributor.schoolcollegeinstituteCollege of Social Sciences and Humanities
dc.contributor.schoolcollegeinstituteCollege of Social Sciences and Humanities
dc.contributor.yokid33267
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T23:44:02Z
dc.date.issued2021
dc.description.abstractHistorical maps include precious data about historical, geographical and economic perspectives of a period. However, several unique challenges and opportunities accompany historical maps compared to modern maps, such as low-quality images, degraded manuscripts and the huge quantity of non-annotated digital map collections. In the recent decade, Convolutional Neural Networks (CNNs) are applied to solve various image processing problems, but they need enormous annotated data to have accurate results. In this work, we annotated text regions of the Third Military Mapping Survey of Austria-Hungary historical map series conducted between 1884 and 1918 manually and made them accessible for researchers. Then, we detected the pixel-wise positions of text regions by employing the deep neural network architecture and recognized them with encouraging error rates.
dc.description.indexedbyScopus
dc.description.indexedbyWoS
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipEuropean Research Council Horizon 2020 Framework Programme (H2020)
dc.identifier.doi10.1145/3476887.3476904
dc.identifier.isbn9781-4503-8690-6
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85118941024&doi=10.1145%2f3476887.3476904&partnerID=40&md5=c84cd20d67b7e32b097b512aecf7448d
dc.identifier.scopus2-s2.0-85118941024
dc.identifier.urihttps://dx.doi.org/10.1145/3476887.3476904
dc.identifier.urihttps://hdl.handle.net/20.500.14288/13580
dc.identifier.wos1124309800005
dc.keywordsConvolutional neural networks
dc.keywordsDocument analysis
dc.keywordsGeospatial artificial intelligence
dc.keywordsImage processing
dc.keywordsText detection
dc.keywordsText recognition
dc.keywordsCharacter recognition
dc.keywordsConvolution
dc.keywordsDeep neural networks
dc.keywordsNetwork architecture
dc.keywordsSurveys
dc.keywordsDocuments analysis
dc.keywordsGeo-spatial
dc.keywordsHistorical maps
dc.keywordsHungarians
dc.keywordsImages processing
dc.keywordsText region
dc.keywordsMilitary mapping
dc.languageEnglish
dc.publisherAssociation for Computing Machinery
dc.relation.grantno679097
dc.sourceACM International Conference Proceeding Series
dc.subjectComputer Science, Information systems
dc.titleText detection and recognition by using CNNs in the Austro-Hungarian historical military mapping survey
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0003-3206-0190
local.contributor.authorid0000-0002-6614-0183
local.contributor.kuauthorKabadayı, Mustafa Erdem
local.contributor.kuauthorCan, Yekta Said
relation.isOrgUnitOfPublicationbe8432df-d124-44c3-85b4-be586c2db8a3
relation.isOrgUnitOfPublication.latestForDiscoverybe8432df-d124-44c3-85b4-be586c2db8a3

Files