Publication:
End-to-end rate-distortion optimization for bi-directional learned video compression

dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorYılmaz, Melih
dc.contributor.kuauthorTekalp, Ahmet Murat
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Electrical and Electronics Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokidN/A
dc.contributor.yokid26207
dc.date.accessioned2024-11-09T13:47:24Z
dc.date.issued2020
dc.description.abstractConventional video compression methods employ a linear transform and block motion model, and the steps of motion estimation, mode and quantization parameter selection, and entropy coding are optimized individually due to combinatorial nature of the end-to-end optimization problem. Learned video compression allows end-to-end rate-distortion optimized training of all nonlinear modules, quantization parameter and entropy model simultaneously. While previous work on learned video compression considered training a sequential video codec based on end-to-end optimization of cost averaged over pairs of successive frames, it is well-known in conventional video compression that hierarchical, bi-directional coding outperforms sequential compression. In this paper, we propose for the first time end-to-end optimization of a hierarchical, bi-directional motion compensated learned codec by accumulating cost function over fixed-size groups of pictures (GOP). Experimental results show that the rate-distortion performance of our proposed learned bi-directional GOP coder outperforms the state-of-the-art end-to-end optimized learned sequential compression as expected.
dc.description.fulltextYES
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBİTAK)
dc.description.sponsorshipTurkish Academy of Sciences (TUBA)
dc.description.versionAuthor's final manuscript
dc.formatpdf
dc.identifier.doi10.1109/ICIP40778.2020.9190881
dc.identifier.eissn2381-8549
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR02689
dc.identifier.isbn9781728163956
dc.identifier.issn1522-4880
dc.identifier.linkhttps://doi.org/10.1109/ICIP40778.2020.9190881
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85098622360
dc.identifier.urihttps://hdl.handle.net/20.500.14288/3765
dc.keywordsBi-directional motion compensation
dc.keywordsDeep learning
dc.keywordsEnd-to-end optimization
dc.keywordsGroup of pictures
dc.keywordsVideo compression
dc.languageEnglish
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.grantno2.17E+35
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9335
dc.source2020 IEEE International Conference on Image Processing (ICIP)
dc.subjectImage compression
dc.titleEnd-to-end rate-distortion optimization for bi-directional learned video compression
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authoridN/A
local.contributor.authorid0000-0003-1465-8121
local.contributor.kuauthorYılmaz, Melih
local.contributor.kuauthorTekalp, Ahmet Murat
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9335.pdf
Size:
1.62 MB
Format:
Adobe Portable Document Format