Publication:
Machine learning-driven atomistic analysis of mechanical behavior in silicon nanowires

dc.contributor.coauthorEsfahani, Mohammad Nasr
dc.contributor.departmentn2STAR (Koç University Nanofabrication and Nanocharacterization Center for Scientifc and Technological Advanced Research)
dc.contributor.departmentKUYTAM (Koç University Surface Science and Technology Center)
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.kuauthorAlaca, Burhanettin Erdem
dc.contributor.kuauthorCanadinç, Demircan
dc.contributor.kuauthorZarepakzad, Sina
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.contributor.schoolcollegeinstituteResearch Center
dc.date.accessioned2025-03-06T20:57:51Z
dc.date.issued2025
dc.description.abstractThis study investigates the modulus of elasticity of silicon nanowires using a combination of molecular dynamics simulations and machine learning techniques. The research presents a substantial dataset with over 3000 data points obtained from molecular dynamics simulations, which reveals detailed insights into the mechanical properties of silicon nanowires and underscores the importance of accurate model calibration. Machine learning surrogate models are employed to predict the elasticity of silicon nanowires, focusing on the influence of surface state and crystal orientation. By analyzing partial dependencies and using inverse pole figures, the study demonstrates that the modulus of elasticity exhibits significant orientation dependence. This work bridges computational and experimental approaches, offering a refined understanding of the mechanical behavior of silicon nanowires. The findings highlight the potential of integrating machine learning with atomistic simulations to improve the predictive accuracy of material properties, building the framework for advancements in nanoelectromechanical applications.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorship<B>Acknowledgments</B> S.Z.P. and B.E.A. gratefully acknowledge financial support by TÜBİTAK under grant no 120E347.
dc.identifier.doi10.1016/j.commatsci.2024.113446
dc.identifier.eissn1879-0801
dc.identifier.grantnoTÜBİTAK [120E347]
dc.identifier.issn0927-0256
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85207080491
dc.identifier.urihttps://doi.org/10.1016/j.commatsci.2024.113446
dc.identifier.urihttps://hdl.handle.net/20.500.14288/27330
dc.identifier.volume246
dc.identifier.wos1351299100001
dc.keywordsSilicon nanowire
dc.keywordsMolecular dynamics
dc.keywordsMachine learning
dc.keywordsTensile behavior
dc.keywordsModulus of elasticity
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofCOMPUTATIONAL MATERIALS SCIENCE
dc.subjectMaterials science
dc.titleMachine learning-driven atomistic analysis of mechanical behavior in silicon nanowires
dc.typeJournal Article
dspace.entity.typePublication
local.publication.orgunit1College of Engineering
local.publication.orgunit1GRADUATE SCHOOL OF SCIENCES AND ENGINEERING
local.publication.orgunit1Research Center
local.publication.orgunit2Department of Mechanical Engineering
local.publication.orgunit2n2STAR (Koç University Nanofabrication and Nanocharacterization Center for Scientifc and Technological Advanced Research)
local.publication.orgunit2KUYTAM (Koç University Surface Science and Technology Center)
local.publication.orgunit2Graduate School of Sciences and Engineering
relation.isOrgUnitOfPublication10041712-016f-439e-ae04-a70d31ed59b5
relation.isOrgUnitOfPublicationd41f66ba-d7a4-4790-9f8f-a456c391209b
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication.latestForDiscovery10041712-016f-439e-ae04-a70d31ed59b5
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublicationd437580f-9309-4ecb-864a-4af58309d287
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files