Publication:
Federated learning for pedestrian detection in vehicular networks

dc.contributor.coauthorBennis, Mehdi
dc.contributor.coauthorElgabli, Anis
dc.contributor.coauthorGündüz, Deniz
dc.contributor.coauthorKaraağaç, Sercan
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorKümeç, Feyzi Ege
dc.contributor.kuauthorReyhanoğlu, Aslıhan
dc.contributor.kuauthorKar, Emrah
dc.contributor.kuauthorTuran, Buğra
dc.contributor.kuauthorErgen, Sinem Çöleri
dc.contributor.otherDepartment of Electrical and Electronics Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.unitKoc University Ford Otosan Automotive Technologies Laboratory (KUFOTAL)
dc.date.accessioned2024-12-29T09:36:02Z
dc.date.issued2023
dc.description.abstractVehicular connectivity is foreseen to increase road safety by enabling connected vehicle applications. On the other hand, machine learning (ML) methods are provisioned to increase road safety by supporting object detection and assisted driving. Recently, distributed ML methods, which rely on data transmission between a parameter server and vehicular edge devices, are introduced to develop intelligent transportation systems. In this paper, we investigate the feasibility of the usage of a distributed ML algorithm, federated learning (FL), to detect pedestrians by using vehicular networks. We first provide a comprehensive overview of the proposed scheme, then highlight the methodology to enable FL-based pedestrian detection from the images obtained by vehicle cameras. We further present experimental validation results for communication resource utilization, and pedestrian detection accuracy by using convolutional neural networks (CNNs) and deep neural networks (DNNs) layers in our model architecture for an FL scheme. We obtain 90% pedestrian detection accuracy with our FL scheme. © 2023 IEEE.
dc.description.indexedbyScopus
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorsThis work was supported by CHIST-ERA grant CHIST-ERA-18-SDCDN-001, the Scientific and Technological Council of Turkey 119E350 and Ford Otosan.
dc.identifier.doi10.1109/BlackSeaCom58138.2023.10299783
dc.identifier.isbn979-835033782-2
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85179008040
dc.identifier.urihttps://doi.org/10.1109/BlackSeaCom58138.2023.10299783
dc.identifier.urihttps://hdl.handle.net/20.500.14288/21906
dc.keywordsCellular vehicle-to-wverything (C-V2X)
dc.keywordsFederated learning
dc.keywordsImage classification
dc.keywordsImage detection
dc.keywordsImage processing
dc.keywordsLTE
dc.keywordsPC5
dc.keywordsPedestrian detection
dc.keywordsVehicular networks
dc.languageen
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relation.grantnoTürkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK, (119E350)
dc.source2023 IEEE International Black Sea Conference on Communications and Networking, Blackseacom 2023
dc.subjectLearning systems
dc.subjectData privacy
dc.subjectInternet of things
dc.titleFederated learning for pedestrian detection in vehicular networks
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.kuauthorKümeç, Feyzi Ege
local.contributor.kuauthorReyhanoğlu, Aslıhan
local.contributor.kuauthorKar, Emrah
local.contributor.kuauthorTuran, Buğra
local.contributor.kuauthorErgen, Sinem Çöleri
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files