Publication:
Control of fork-join processing networks with multiple job types and parallel shared resources

dc.contributor.departmentDepartment of Business Administration
dc.contributor.kuauthorÖzkan, Erhun
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Business Administration
dc.contributor.schoolcollegeinstituteCollege of Administrative Sciences and Economics
dc.contributor.yokid294016
dc.date.accessioned2024-11-09T12:11:40Z
dc.date.issued2021
dc.description.abstractA fork-join processing network is a queueing network in which tasks associated with a job can be processed simultaneously. Fork-join processing networks are prevalent in computer systems, healthcare, manufacturing, project management, justice systems, and so on. Unlike the conventional queueing networks, fork-join processing networks have synchronization constraints that arise because of the parallel processing of tasks and can cause significant job delays. We study scheduling in fork-join processing networks with multiple job types and parallel shared resources. Jobs arriving in the system fork into arbitrary number of tasks, then those tasks are processed in parallel, and then they join and leave the network. There are shared resources processing multiple job types. We study the scheduling problem for those shared resources (i.e., which type of job to prioritize at any given time) and propose an asymptotically optimal scheduling policy in diffusion scale.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue2
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipN/A
dc.description.versionAuthor's final manuscript
dc.description.volume47
dc.formatpdf
dc.identifier.doi10.1287/moor.2021.1170
dc.identifier.eissn1526-5471
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03355
dc.identifier.issn0364-765X
dc.identifier.linkhttps://doi.org/10.1287/moor.2021.1170
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85133964093
dc.identifier.urihttps://hdl.handle.net/20.500.14288/1086
dc.identifier.wos712812100001
dc.keywordsFork-join processing network
dc.keywordsScheduling control
dc.keywordsAsymptotic optimality
dc.keywordsDiffusion scale
dc.languageEnglish
dc.publisherThe Institute for Operations Research and the Management Sciences (INFORMS)
dc.relation.grantnoNA
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10145
dc.sourceMathematics of Operations Research
dc.subjectOperations research and management science
dc.subjectApplied mathematics
dc.titleControl of fork-join processing networks with multiple job types and parallel shared resources
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0001-6870-9495
local.contributor.kuauthorÖzkan, Erhun
relation.isOrgUnitOfPublicationca286af4-45fd-463c-a264-5b47d5caf520
relation.isOrgUnitOfPublication.latestForDiscoveryca286af4-45fd-463c-a264-5b47d5caf520

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10145.pdf
Size:
712.07 KB
Format:
Adobe Portable Document Format