Publication:
Lung cancer multi-omics digital human avatars for integrating precision medicine into clinical practice: the LANTERN study

Thumbnail Image

Organizational Units

Organizational Unit

Program

School / College / Institute

SCHOOL OF MEDICINE

KU-Authors

KU Authors

Co-Authors

Lococo, Filippo
Boldrini, Luca
Diepriye, Charles-Davies
Evangelista, Jessica
Nero, Camilla
Flamini, Sara
Minucci, Angelo
De Paolis, Elisa
Vita, Emanuele
Cesario, Alfredo

Publication Date

Language

Embargo Status

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

BackgroundThe current management of lung cancer patients has reached a high level of complexity. Indeed, besides the traditional clinical variables (e.g., age, sex, TNM stage), new omics data have recently been introduced in clinical practice, thereby making more complex the decision-making process. With the advent of Artificial intelligence (AI) techniques, various omics datasets may be used to create more accurate predictive models paving the way for a better care in lung cancer patients.MethodsThe LANTERN study is a multi-center observational clinical trial involving a multidisciplinary consortium of five institutions from different European countries. The aim of this trial is to develop accurate several predictive models for lung cancer patients, through the creation of Digital Human Avatars (DHA), defined as digital representations of patients using various omics-based variables and integrating well-established clinical factors with genomic data, quantitative imaging data etc. A total of 600 lung cancer patients will be prospectively enrolled by the recruiting centers and multi-omics data will be collected. Data will then be modelled and parameterized in an experimental context of cutting-edge big data analysis. All data variables will be recorded according to a shared common ontology based on variable-specific domains in order to enhance their direct actionability. An exploratory analysis will then initiate the biomarker identification process. The second phase of the project will focus on creating multiple multivariate models trained though advanced machine learning (ML) and AI techniques for the specific areas of interest. Finally, the developed models will be validated in order to test their robustness, transferability and generalizability, leading to the development of the DHA. All the potential clinical and scientific stakeholders will be involved in the DHA development process. The main goals aim of LANTERN project are: i) To develop predictive models for lung cancer diagnosis and histological characterization; (ii) to set up personalized predictive models for individual-specific treatments; iii) to enable feedback data loops for preventive healthcare strategies and quality of life management.DiscussionThe LANTERN project will develop a predictive platform based on integration of multi-omics data. This will enhance the generation of important and valuable information assets, in order to identify new biomarkers that can be used for early detection, improved tumor diagnosis and personalization of treatment protocols.Ethics Committee approval number5420 - 0002485/23 from Fondazione Policlinico Universitario Agostino Gemelli IRCCS - Universita Cattolica del Sacro Cuore Ethics Committee.

Source

Publisher

BMC

Subject

Oncology

Citation

Has Part

Source

BMC Cancer

Book Series Title

Edition

DOI

10.1186/s12885-023-10997-x

item.page.datauri

Link

Rights

Rights URL (CC Link)

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

3

Views

4

Downloads

View PlumX Details