Publication:
A Bayesian generalized linear model for Crimean–Congo hemorrhagic fever incidents

dc.contributor.coauthorRyu, Duchwan
dc.contributor.coauthorBilgili, Devrim
dc.contributor.coauthorLiang, Faming
dc.contributor.coauthorEbrahimi, Nader
dc.contributor.kuauthorErgönül, Önder
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteSchool of Medicine
dc.contributor.yokid110398
dc.date.accessioned2024-11-09T23:46:59Z
dc.date.issued2018
dc.description.abstractGlobal spread of the Crimean-Congo hemorrhagic fever (CCHF) is a fatal viral infection disease found in parts of Africa, Asia, Eastern Europe and Middle East, with a fatality rate of up to 30%. A timely prediction of the prevalence of CCHF incidents is highly desirable, while CCHF incidents often exhibit nonlinearity in both temporal and spatial features. However, the modeling of discrete incidents is not trivial. Moreover, the CCHF incidents are monthly observed in a long period and take a nonlinear pattern over a region at each time point. Hence, the estimation and the data assimilation for incidents require extensive computations. In this paper, using the data augmentation with latent variables, we propose to utilize a dynamically weighted particle filter to take advantage of its population controlling feature in data assimilation. We apply our approach in an analysis of monthly CCHF incidents data collected in Turkey between 2004 and 2012. The results indicate that CCHF incidents are higher at Northern Central Turkey during summer and that some beforehand interventions to stop the propagation are recommendable. Supplementary materials accompanying this paper appear on-line.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue1
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.volume23
dc.identifier.doi10.1007/s13253-017-0310-9
dc.identifier.eissn1537-2693
dc.identifier.issn1085-7117
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85032671411
dc.identifier.urihttp://dx.doi.org/10.1007/s13253-017-0310-9
dc.identifier.urihttps://hdl.handle.net/20.500.14288/14051
dc.identifier.wos425023400009
dc.keywordsBayesian generalized linear model
dc.keywordsData augmentation
dc.keywordsDynamically weighted importance sampling
dc.keywordsRadial basis function networks
dc.keywordsSpatiotemporal model basis function networks
dc.keywordsClinical-features
dc.keywordsVirus
dc.keywordsPopulation
dc.keywordsPrevalence
dc.keywordsAfrica
dc.languageEnglish
dc.publisherSpringer
dc.sourceJournal of Agricultural, Biological and Environmental Statistics
dc.subjectBiology
dc.subjectMathematical
dc.subjectComputational biology
dc.subjectStatistics
dc.subjectProbability
dc.titleA Bayesian generalized linear model for Crimean–Congo hemorrhagic fever incidents
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0003-1935-9235
local.contributor.kuauthorErgönül, Mehmet Önder

Files