Publication: Skeletal and molecular findings in 51 cleidocranial dysplasia patients from Turkey
Program
KU-Authors
KU Authors
Co-Authors
Berkay, Ezgi Gizem
Elkanova, Leyla
Kalayci, Tugba
Uludag Alkaya, Dilek
Altunoglu, Umut
Cefle, Kivanc
Mihci, Ercan
Nur, Banu
Tasdelen, Elifcan
Bayramoglu, Zuhal
Advisor
Publication Date
2021
Language
English
Type
Journal Article
Journal Title
Journal ISSN
Volume Title
Abstract
Loss or decrease of function in runt-related transcription factor 2 encoded by RUNX2 is known to cause a rare autosomal-dominant skeletal disorder, cleidocranial dysplasia (CCD). Clinical spectrum and genetic findings in 51 CCD patients from 30 unrelated families are herein presented. In a majority of the patients, facial abnormalities, such as delayed fontanel closure (89%), parietal and frontal bossing (80%), metopic groove (77%), midface hypoplasia (94%), and abnormal mobility of shoulders (90%), were recorded following clinical examination. In approximately one-half of the subjects, wormian bone (51%), short stature (43%), bell-shaped thorax (42%), wide pubic symphysis (50%), hypoplastic iliac wing (59%), and chef's hat sign (44%) presented in available radiological examinations. Scoliosis was identified in 28% of the patients. Investigation of RUNX2 revealed small sequence alterations in 90% and gross deletions in 10% of the patients; collectively, 23 variants including 11 novel changes (c.29_30insT, c.203delAinsCG, c.423 + 2delT, c.443_454delTACCAGATGGGAinsG, c.505C > T, c.594_595delCTinsG, c.636_637insC, c.685 + 5G > A, c.1088G > T, c.1281delC, Exon 6-9 deletion) presented high allelic heterogeneity. Novel c.29_30insT is unique in affecting the P1-driven long isoform of RUNX2, which is expected to disrupt the N-terminal region of RUNX2; this was shown in two unrelated phenotypically discordant patients. The clinical findings highlighted mild intra-familial genotype-phenotype correlation in our CCD cohort.
Description
Source:
American Journal of Medical Genetics Part A
Publisher:
Wiley
Keywords:
Subject
Genetics, Heredity