Publication:
Exact performance measures for peer-to-peer epidemic information diffusion

dc.contributor.coauthorN/A
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentDepartment of Mathematics
dc.contributor.departmentDepartment of Mathematics
dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorÖzkasap, Öznur
dc.contributor.kuauthorYazıcı, Emine Şule
dc.contributor.kuauthorKüçükçifçi, Selda
dc.contributor.kuauthorÇağlar, Mine
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Computer Engineering
dc.contributor.otherDepartment of Mathematics
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.yokid113507
dc.contributor.yokid27432
dc.contributor.yokid105252
dc.contributor.yokid105131
dc.date.accessioned2024-11-09T23:07:42Z
dc.date.issued2006
dc.description.abstractWe consider peer-to-peer anti-entropy paradigms for epidemic information diffusion, namely pull, push and hybrid cases, and provide exact performance measures for them. Major benefits of the proposed epidemic algorithms are that they are fully distributed, utilize local information only via pair-wise interactions, and provide eventual consistency, scalability and communication topology-independence. Our contribution is the derivation of exact expressions for infection probabilities through elaborated counting techniques on a digraph. Considering the first passage times of a Markov chain based on these probabilities, we find the expected message delay experienced by each peer and its overall mean as a function of initial number of infectious peers. In terms of these criteria, the hybrid approach outperforms pull and push paradigms, and push is better than the pull case. Such theoretical results would be beneficial when integrating the models in several peer-to-peer distributed application scenarios.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessNO
dc.description.volume4263
dc.identifier.doiN/A
dc.identifier.eissn1611-3349
dc.identifier.isbn3-540-47242-8
dc.identifier.issn0302-9743
dc.identifier.scopus2-s2.0-33845261847
dc.identifier.uriN/A
dc.identifier.urihttps://hdl.handle.net/20.500.14288/9171
dc.identifier.wos243130100090
dc.keywordsPeer-to-peer
dc.keywordsEpidemic
dc.keywordsAnti-entropy
dc.keywordsCounting
dc.keywordsMarkov chain
dc.languageEnglish
dc.publisherSpringer-Verlag Berlin
dc.sourceComputer And Information Sciences - Iscis 2006, Proceedings
dc.subjectComputer science
dc.subjectArtificial intelligence
dc.subjectInformation systems
dc.subjectSoftware engineering
dc.titleExact performance measures for peer-to-peer epidemic information diffusion
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0003-4343-0986
local.contributor.authorid0000-0001-6824-451X
local.contributor.authorid0000-0002-4954-3116
local.contributor.authorid0000-0001-9452-5251
local.contributor.kuauthorÖzkasap, Öznur
local.contributor.kuauthorYazıcı, Emine Şule
local.contributor.kuauthorKüçükçifçi, Selda
local.contributor.kuauthorÇağlar, Mine
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe

Files