Publication:
Pseudo-Hermitian quantum mechanics with unbounded metric operators

dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorMostafazadeh, Ali
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T11:42:42Z
dc.date.issued2013
dc.description.abstractI extend the formulation of pseudo-Hermitian quantum mechanics to eta(+)-pseudo-Hermitian Hamiltonian operators H with an unbounded metric operator eta(+). In particular, I give the details of the construction of the physical Hilbert space, observables and equivalent Hermitian Hamiltonian for the case that H has a real and discrete spectrum and its eigenvectors belong to the domain of eta(+) and consequently root eta(+).
dc.description.fulltextYES
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue1989
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipTurkish Academy of Sciences (TÜBA)
dc.description.versionAuthor's final manuscript
dc.description.volume371
dc.identifier.doi10.1098/rsta.2012.0050
dc.identifier.eissn1471-2962
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR00262
dc.identifier.issn1364-503X
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-84875419280
dc.identifier.urihttps://doi.org/10.1098/rsta.2012.0050
dc.identifier.wos316226200005
dc.keywordsPseudo-Hermitian
dc.keywordsQuasi-Hermitian
dc.keywordsInner product
dc.keywordsUnbounded metric operator
dc.keywordsObservable
dc.language.isoeng
dc.publisherThe Royal Society
dc.relation.ispartofPhilosophical Transactions of the Royal Society A-Mathematical Physical And Engineering Sciences
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/1287
dc.subjectMultidisciplinary sciences
dc.titlePseudo-Hermitian quantum mechanics with unbounded metric operators
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorMostafazadeh, Ali
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Mathematics
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
1287.pdf
Size:
136.41 KB
Format:
Adobe Portable Document Format