Publication:
Continuous emotion tracking using total variability space

dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorKhaki, Hossein
dc.contributor.kuauthorErzin, Engin
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Electrical and Electronics Engineering
dc.contributor.otherDepartment of Computer Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokidN/A
dc.contributor.yokid34503
dc.date.accessioned2024-11-09T11:54:53Z
dc.date.issued2015
dc.description.abstractAutomatic continuous emotion tracking (CET) has received increased attention with expected applications in medical, robotic, and human-machine interaction areas. The speech signal carries useful clues to estimate the affective state of the speaker. In this paper, we present Total Variability Space (TVS) for CET from speech data. TVS is a widely used framework in speaker and language recognition applications. In this study, we applied TVS as an unsupervised emotional feature extraction framework. Assuming a low temporal variation in the affective space, we discretize the continuous affective state and extract i-vectors. Experimental evaluations are performed on the CreativeIT dataset and fusion results with pool of statistical functions over mel frequency cepstral coefficients (MFCCs) show a 2% improvement for the emotion tracking from speech.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipN/A
dc.description.versionPublisher version
dc.formatpdf
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR00682
dc.identifier.isbn978-1-5108-1790-6
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-84959168683
dc.identifier.urihttps://hdl.handle.net/20.500.14288/810
dc.identifier.wos380581600273
dc.keywordsInterdisciplinary applications
dc.keywordsTotal variability space
dc.keywordsI-Vector
dc.keywordsContinuous emotion tracking
dc.keywordsGaussian mixture regression
dc.languageEnglish
dc.publisherInternational Speech Communication Association (ISCA)
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/8104
dc.source16th Annual Conference Of The International Speech Communication Association (Interspeech 2015), Vols 1-5
dc.subjectAcoustics
dc.subjectComputer science
dc.titleContinuous emotion tracking using total variability space
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authoridN/A
local.contributor.authorid0000-0002-2715-2368
local.contributor.kuauthorKhaki, Hossein
local.contributor.kuauthorErzin, Engin
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
8104.pdf
Size:
167.17 KB
Format:
Adobe Portable Document Format