Publication:
An extended version of the NLMF algorithm based on proportionate Krylov subspace projections

dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorYılmaz, Yasin
dc.contributor.kuauthorKozat, Süleyman Serdar
dc.contributor.kuprofileMaster Student
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokidN/A
dc.contributor.yokid177972
dc.date.accessioned2024-11-09T23:13:53Z
dc.date.issued2009
dc.description.abstractThe Krylov proportionate normalized least mean square (KPNLMS) algorithm extended the use of proportional update idea of the PNLMS (proportionate normalized LMS) algorithm to the non-sparse (dispersive) systems. This paper deals with the mean fourth minimization of the error and proposes Krylov proportionate normalized least mean fourth algorithm (KPNLMF). First, the PNLMF (proportionate NLMF) algorithm is derived, then Krylov subspace projection technique is applied to the PNLMF algorithm to obtain the KPNLMF algorithm. While fully exploiting the fast convergence property of the PNLMF algorithm, the system to be identified does not need to be sparse in the KPNLMF algorithm due to the Krylov subspace projection technique. In our simulations, the KPNLMF algorithm converges faster than the KPNLMS algorithm when both algorithms converge to the same system mismatch value. The KPNLMF algorithm achieves this without any increase in the computational complexity. Further numerical examples comparing the KPNLMF with the NLMF and the KPNLMS algorithms support the fast convergence of the KPNLMF algorithm.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.identifier.doi10.1109/ICMLA.2009.47
dc.identifier.isbn978-0-7695-3926-3
dc.identifier.scopus2-s2.0-77950821596
dc.identifier.urihttp://dx.doi.org/10.1109/ICMLA.2009.47
dc.identifier.urihttps://hdl.handle.net/20.500.14288/10063
dc.identifier.wos291011600059
dc.keywordsKrylov subspaces
dc.keywordsNLMF
dc.keywordsProportional update
dc.languageEnglish
dc.publisherIeee Computer Soc
dc.sourceEighth International Conference on Machine Learning and Applications, Proceedings
dc.subjectComputer Science
dc.subjectArtificial intelligence
dc.subjectElectrical electronics engineering
dc.titleAn extended version of the NLMF algorithm based on proportionate Krylov subspace projections
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authoridN/A
local.contributor.authorid0000-0002-6488-3848
local.contributor.kuauthorYılmaz, Yasin
local.contributor.kuauthorKozat, Süleyman Serdar
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files