Publication:
N2+(2Σg) and Rb(2S) in a hybrid trap: modeling ion losses from radiative association paths

dc.contributor.coauthorGianturco, F. A.
dc.contributor.coauthorDorfler, A. D.
dc.contributor.coauthorWillitsch, S.
dc.contributor.coauthorGonzalez-Lezana, T.
dc.contributor.coauthorVillarreal, P.
dc.contributor.departmentDepartment of Chemistry
dc.contributor.departmentDepartment of Chemistry
dc.contributor.kuauthorYurtsever, İsmail Ersin
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.yokid7129
dc.date.accessioned2024-11-09T11:47:38Z
dc.date.issued2019
dc.description.abstractBy employing ab initio computed intermolecular potential energy surfaces we calculate the radiative association probabilities and rates for two different associative mechanisms involving trapped molecular ions N 2 + ( 2 Σ g ) interacting either directly with ultracold Rb atoms or undergoing charge-exchange (CE) processes leading to the formation of complexes of the strongly exothermic products N 2 (X 1 Σ g ) plus Rb + ( 1 S 0 ). The two processes are expected to provide possible paths to ion losses in the trap within the timescale of experiments. The present calculations suggest that the associative rates for the 'vibrational' direct process are too small to be of any significant importance at the millikelvin temperatures considered in the experiments, while the 'vibronic' path into radiatively associating the CE products has a probability of occurring which is several orders of magnitude larger. However the reaction rate constants attributed to non-adiabatic CE [F. H. J. Hall and S. Willist, Phys. Rev. Lett., 2012, 109, 233202] are in turn several orders of magnitude larger than the radiative ones calculated here, thereby making the primary experimental process substantially unaffected by the radiative losses channel.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue16
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipEuropean Union (European Union)
dc.description.sponsorshipMarie-Curie Initial Training Network
dc.description.sponsorshipMinistry of Science and Innovation, Spain (MICINN)
dc.description.sponsorshipSwiss National Science Foundation
dc.description.versionPublisher version
dc.description.volume21
dc.formatpdf
dc.identifier.doi10.1039/c8cp06761a
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR01634
dc.identifier.issn1463-9076
dc.identifier.linkhttps://doi.org/10.1039/c8cp06761a
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85064989017
dc.identifier.urihttps://hdl.handle.net/20.500.14288/577
dc.identifier.wos465603200011
dc.keywordsUltracold molecules
dc.keywordsPolarizabilities
dc.keywordsPredissociation
dc.keywordsApproximation
dc.languageEnglish
dc.publisherRoyal Society of Chemistry (RSC)
dc.relation.grantnoNA
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/8265
dc.sourcePhysical Chemistry Chemical Physics
dc.subjectChemistry
dc.subjectPhysics
dc.titleN2+(2Σg) and Rb(2S) in a hybrid trap: modeling ion losses from radiative association paths
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0001-9245-9596
local.contributor.kuauthorYurtsever, İsmail Ersin
relation.isOrgUnitOfPublication035d8150-86c9-4107-af16-a6f0a4d538eb
relation.isOrgUnitOfPublication.latestForDiscovery035d8150-86c9-4107-af16-a6f0a4d538eb

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
8265.pdf
Size:
829.74 KB
Format:
Adobe Portable Document Format