Publication:
Semantic segmentation of RGBD videos with recurrent fully convolutional neural networks

dc.contributor.advisorYemez, Yücel
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.kuauthorYurdakul, Ekrem Emre
dc.contributor.programComputer Science and Engineering
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.coverage.spatialİstanbul
dc.date.accessioned2024-11-09T22:07:42Z
dc.date.issued2017
dc.format.extentxi, 43 leaves : illustrations ; 30 cm.
dc.identifier.urihttps://hdl.handle.net/20.500.14288/4921
dc.language.isoeng
dc.publisherKoç University
dc.relation.collectionKU Theses and Dissertations
dc.rightsrestrictedAccess
dc.rights.copyrightsnote© All Rights Reserved. Accessible to Koç University Affiliated Users Only!
dc.subjectNeural networks (Computer science)
dc.subjectImage segmentation
dc.subjectImage processing
dc.titleSemantic segmentation of RGBD videos with recurrent fully convolutional neural networks
dc.typeThesis
dspace.entity.typePublication
local.contributor.kuauthorYurdakul, Ekrem Emre
relation.isAdvisorOfThesis23c08ce5-6539-43b2-a2fa-ce7e80c2b52d
relation.isAdvisorOfThesis.latestForDiscovery23c08ce5-6539-43b2-a2fa-ce7e80c2b52d
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication.latestForDiscovery3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication.latestForDiscovery434c9663-2b11-4e66-9399-c863e2ebae43

Files

Original bundle

Now showing 1 - 1 of 1
Placeholder
Name:
27688.pdf
Size:
4.15 MB
Format:
Adobe Portable Document Format