Publication:
Spectral properties of size-invariant shape transformation

dc.contributor.departmentDepartment of Physics
dc.contributor.kuauthorAydın, Alhun
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2025-01-19T10:28:36Z
dc.date.issued2023
dc.description.abstractSize-invariant shape transformation is a technique of changing the shape of a domain while preserving its sizes under the Lebesgue measure. In quantum-confined systems, this transformation leads to so-called quantum shape effects in the physical properties of confined particles associated with the Dirichlet spectrum of the confining medium. Here we show that the geometric couplings between levels generated by the size-invariant shape transformations cause nonuniform scaling in the eigenspectra. In particular, the nonuniform level scaling, in the direction of increasing quantum shape effect, is characterized by two distinct spectral features: lowering of the first eigenvalue (ground-state reduction) and changing of the spectral gaps (energy level splitting or degeneracy formation depending on the symmetries). We explain the ground-state reduction by the increase in local breadth (i.e., parts of the domain becoming less confined) that is associated with the sphericity of these local portions of the domain. We accurately quantify the sphericity using two different measures: the radius of the inscribed n-sphere and the Hausdorff distance. Due to Rayleigh-Faber-Krahn inequality, the greater the sphericity, the lower the first eigenvalue. Then level splitting or degeneracy, depending on the symmetries of the initial configuration, becomes a direct consequence of size invariance dictating the eigenvalues to have the same asymptotic behavior due to Weyl law. Such level splittings may be interpreted as geometric analogs of Stark and Zeeman effects. Furthermore, we find that the ground-state reduction causes a quantum thermal avalanche which is the underlying reason for the peculiar effect of spontaneous transitions to lower entropy states in systems exhibiting the quantum shape effect. Unusual spectral characteristics of size-preserving transformations can assist in designing confinement geometries that could lead to classically inconceivable quantum thermal machines.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue5
dc.description.openaccessGreen Submitted
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume107
dc.identifier.doi10.1103/PhysRevE.107.054108
dc.identifier.eissn2470-0053
dc.identifier.issn2470-0045
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85159681955
dc.identifier.urihttps://doi.org/10.1103/PhysRevE.107.054108
dc.identifier.urihttps://hdl.handle.net/20.500.14288/25756
dc.identifier.wos988665800003
dc.keywordsEigenvalues and eigenfunctions
dc.keywordsGeometry
dc.keywordsMathematical transformations
dc.keywordsQuantum theory
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.ispartofPhysical Review E
dc.subjectPhysics, fluids and plasmas
dc.subjectPhysics, mathematical
dc.titleSpectral properties of size-invariant shape transformation
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorAydın, Alhun
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Physics
relation.isOrgUnitOfPublicationc43d21f0-ae67-4f18-a338-bcaedd4b72a4
relation.isOrgUnitOfPublication.latestForDiscoveryc43d21f0-ae67-4f18-a338-bcaedd4b72a4
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IR05532.pdf
Size:
2.89 MB
Format:
Adobe Portable Document Format