Publication:
The effect of viscoelasticity in an airway closure model

dc.contributor.coauthorRomano, F.
dc.contributor.coauthorFujioka, H.
dc.contributor.coauthorGrotberg, J. B.
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorMuradoğlu, Metin
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid46561
dc.date.accessioned2024-11-09T13:10:35Z
dc.date.issued2021
dc.description.abstractThe closure of a human lung airway is modelled as a pipe coated internally with a liquid that takes into account the viscoelastic properties of mucus. For a thick-enough coating, the Plateau-Rayleigh instability blocks the airway by the creation of a liquid plug, and the preclosure phase is dominated by the Newtonian behaviour of the liquid. Our previous study with a Newtonian-liquid model demonstrated that the bifrontal plug growth consequent to airway closure induces a high level of stress and stress gradients on the airway wall, which is large enough to damage the epithelial cells, causing sublethal or lethal responses. In this study, we explore the effect of the viscoelastic properties of mucus by means of the Oldroyd-B and FENE-CR model. Viscoelasticity is shown to be very relevant in the postcoalescence process, introducing a second peak of the wall shear stresses. This second peak is related to an elastic instability due to the presence of the polymeric extra stresses. For high-enough Weissenberg and Laplace numbers, this second shear stress peak is as severe as the first one. Consequently, a second lethal or sublethal response of the epithelial cells is induced.
dc.description.fulltextYES
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TÜBİTAK)
dc.description.sponsorshipNational Institutes of Health (NIH)
dc.description.versionPublisher version
dc.description.volume913
dc.formatpdf
dc.identifier.doi10.1017/jfm.2020.1162
dc.identifier.eissn1469-7645
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR02812
dc.identifier.issn0022-1120
dc.identifier.linkhttps://doi.org/10.1017/jfm.2020.1162
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85101968831
dc.identifier.urihttps://hdl.handle.net/20.500.14288/2819
dc.identifier.wos624029600001
dc.keywordsPulmonary fluid mechanics
dc.languageEnglish
dc.publisherCambridge University Press (CUP)
dc.relation.grantno119M513
dc.relation.grantnoR01-HL136141
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/9463
dc.sourceJournal of Fluid Mechanics
dc.subjectMechanics
dc.subjectPhysics
dc.subjectFluids and plasmas
dc.titleThe effect of viscoelasticity in an airway closure model
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-1758-5418
local.contributor.kuauthorMuradoğlu, Metin
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
9463.pdf
Size:
3.2 MB
Format:
Adobe Portable Document Format