Publication:
Identifying key miRNA–mRNA regulatory modules in cancer using sparse multivariate factor regression

dc.contributor.coauthorN/A
dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Industrial Engineering
dc.contributor.departmentN/A
dc.contributor.kuauthorMokhtaridoost, Milad
dc.contributor.kuauthorGönen, Mehmet
dc.contributor.kuprofilePhD Student
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Industrial Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteSchool of Medicine
dc.contributor.yokidN/A
dc.contributor.yokid237468
dc.date.accessioned2024-11-09T22:58:28Z
dc.date.issued2020
dc.description.abstractThe interactions between microRNAs (miRNAs) and messenger RNAs (mRNAs) are known to have a major effect on the formation and progression of cancer. In this study, we identified regulatory modules of 32 cancer types using a sparse multivariate factor regression model on matched miRNA and mRNA expression profiles of more than 9,000 primary tumors. We used an algorithm that decomposes the coefficient matrix into two low-rank matrices with separate sparsity-inducing penalty terms on each. The first matrix linearly transforms the predictors to a set of latent factors, and the second one regresses the responses using these factors. Our solution significantly outperformed another decomposition-based approach in terms of normalized root mean squared error in all 32 cohorts. We demonstrated the biological relevance of our results by performing survival and gene set enrichment analyses. The validation of overall results indicated that our solution is highly efficient for identifying key miRNA–mRNA regulatory modules.
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.volume12565 LNCS
dc.identifier.doi10.1007/978-3-030-64583-0_38
dc.identifier.isbn9783-0306-4582-3
dc.identifier.issn0302-9743
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85101294215&doi=10.1007%2f978-3-030-64583-0_38&partnerID=40&md5=3ca85070f8724aafa263c78f9a04dc51
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85101294215
dc.identifier.uriN/A
dc.identifier.urihttps://hdl.handle.net/20.500.14288/7727
dc.keywordsCancer biology
dc.keywordsMachine learning
dc.keywordsMessenger RNAs
dc.keywordsMicroRNAs
dc.keywordsOptimization
dc.keywordsRegulatory modules
dc.languageEnglish
dc.publisherSpringer Science and Business Media Deutschland GmbH
dc.sourceLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.subjectPrediction
dc.subjectMicroRNAs
dc.subjectArgonaute proteins
dc.titleIdentifying key miRNA–mRNA regulatory modules in cancer using sparse multivariate factor regression
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0001-6185-4251
local.contributor.authorid0000-0002-2483-075X
local.contributor.kuauthorMokhtaridoost, Milad
local.contributor.kuauthorGönen, Mehmet
relation.isOrgUnitOfPublicationd6d00f52-d22d-4653-99e7-863efcd47b4a
relation.isOrgUnitOfPublication.latestForDiscoveryd6d00f52-d22d-4653-99e7-863efcd47b4a

Files