Publication:
Stochastic control for a class of random evolution models

dc.contributor.coauthorHongler, Max-Olivier
dc.contributor.coauthorStreit, Ludwig
dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorSoner, Halil Mete
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Mathematics
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T23:03:08Z
dc.date.issued2004
dc.description.abstractWe construct the explicit connection existing between a solvable model of the discrete velocities non-linear Boltzmann equation and the Hamilton-Bellman-Jacobi equation associated with a simple optimal control of a piecewise deterministic process. This study extends the known relation that exists between the Burgers equation and a simple controlled diffusion problem. In both cases the resulting partial differential equations can be linearized via a logarithmic transformation and hence offer the possibility to solve physically relevant non-linear field models in full generality.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue2
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.volume49
dc.identifier.doi10.1007/s00245-003-0786-2
dc.identifier.issn0095-4616
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-21144431574
dc.identifier.urihttp://dx.doi.org/10.1007/s00245-003-0786-2
dc.identifier.urihttps://hdl.handle.net/20.500.14288/8418
dc.identifier.wos189001800002
dc.keywordsPiecewise deterministic evolutions
dc.keywordsStochastic optimal control
dc.keywordsLogarithmic transformation
dc.keywordsNonlinear field equations
dc.keywordsBoltzmann-equation
dc.languageEnglish
dc.publisherSpringer-Verlag
dc.sourceApplied Mathematics and Optimization
dc.subjectMathematics
dc.titleStochastic control for a class of random evolution models
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-0824-1808
local.contributor.kuauthorSoner, Halil Mete
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe

Files