Publication:
SplitOut: out-of-the-box training-hijacking detection in split learning via outlier detection

dc.contributor.coauthorErdogan, Ege
dc.contributor.coauthorTeksen, Unat
dc.contributor.coauthorCeliktenyildiz, M. Salih
dc.contributor.coauthorKupcu, Alptekin
dc.contributor.coauthorCicek, A. Erciment
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorKüpçü, Alptekin
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2025-03-06T20:57:52Z
dc.date.issued2025
dc.description.abstractSplit learning enables efficient and privacy-aware training of a deep neural network by splitting a neural network so that the clients (data holders) compute the first layers and only share the intermediate output with the central compute-heavy server. This paradigm introduces a new attack medium in which the server has full control over what the client models learn, which has already been exploited to infer the private data of clients and to implement backdoors in the client models. Although previous work has shown that clients can successfully detect such training-hijacking attacks, the proposed methods rely on heuristics, require tuning of many hyperparameters, and do not fully utilize the clients' capabilities. In this work, we show that given modest assumptions regarding the clients' compute capabilities, an out-of-the-box outlier detection method can be used to detect existing training-hijacking attacks with almost-zero false positive rates. We conclude through experiments on different tasks that the simplicity of our approach we name SplitOut makes it a more viable and reliable alternative compared to the earlier detection methods.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipWe acknowledge the Scientific and Technological Research Council of Turkey (TÜBİTAK) project 119E088.
dc.identifier.doi10.1007/978-981-97-8016-7_6
dc.identifier.eissn1611-3349
dc.identifier.grantnoScientific and Technological Research Council of Turkey (TÜBİTAK) [119E088]
dc.identifier.isbn9789819780150
dc.identifier.isbn9789819780167
dc.identifier.issn0302-9743
dc.identifier.quartileQ4
dc.identifier.scopus2-s2.0-85206187794
dc.identifier.urihttps://doi.org/10.1007/978-981-97-8016-7_6
dc.identifier.urihttps://hdl.handle.net/20.500.14288/27337
dc.identifier.volume14906
dc.identifier.wos1344497600006
dc.keywordsMachine learning
dc.keywordsData privacy
dc.keywordsSplit learning
dc.keywordsTraining-hijacking
dc.language.isoeng
dc.publisherSpringer-Verlag Singapore Pte Ltd
dc.relation.ispartofCRYPTOLOGY AND NETWORK SECURITY, PT II, CANS 2024
dc.subjectComputer science
dc.titleSplitOut: out-of-the-box training-hijacking detection in split learning via outlier detection
dc.typeConference Proceeding
dspace.entity.typePublication
local.contributor.kuauthorKüpçü, Alptekin
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Computer Engineering
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files