Publication:
Automatic classification,of musical genres using inter-genre similarity

dc.contributor.coauthorBağcı, Ulaş
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorErzin, Engin
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Computer Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid34503
dc.date.accessioned2024-11-09T23:59:45Z
dc.date.issued2007
dc.description.abstractMusical genre classification is an essential tool for music information retrieval systems and it has potential to become a highly demanded application in various media platforms. Two important problems of the automatic musical genre classification are feature extraction and classifier design. In this letter, we propose two novel classifiers using inter-genre similarity (IGS) modeling and investigate the use of dynamic timbral texture features in order to improve automatic musical genre classification performance. Inter-genre similarity is modeled over hard-to-classify samples of the musical genre feature space. In the classification, samples within inter-genre similarity class are eliminated to reduce inter-genre confusion and to improve genre classification performance. Experimental results show that the proposed classifiers provide better classification rates than the existing methods.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue8
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.volume14
dc.identifier.doi10.1109/LSP.2006.891320
dc.identifier.eissn1558-2361
dc.identifier.issn1070-9908
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-34547912516
dc.identifier.urihttp://dx.doi.org/10.1109/LSP.2006.891320
dc.identifier.urihttps://hdl.handle.net/20.500.14288/15672
dc.identifier.wos248234800004
dc.keywordsInter-genre similarity (IGS) modeling
dc.keywordsMel-frequency cepstral coefficients (MFCC)
dc.keywordsMusical genre classification
dc.languageEnglish
dc.publisherIEEE-Inst Electrical Electronics Engineers Inc
dc.sourceIEEE Signal Processing Letters
dc.subjectEngineering
dc.subjectElectrical electronic engineering
dc.titleAutomatic classification,of musical genres using inter-genre similarity
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-2715-2368
local.contributor.kuauthorErzin, Engin
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae

Files