Publication:
Prediction of allosteric communication pathways in proteins

dc.contributor.coauthorHaliloğlu, Türkan
dc.contributor.coauthorHacısüleyman, Aysima
dc.contributor.departmentDepartment of Chemical and Biological Engineering
dc.contributor.kuauthorErman, Burak
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Chemical and Biological Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid179997
dc.date.accessioned2024-11-09T23:51:25Z
dc.date.issued2022
dc.description.abstractMotivation Allostery in proteins is an essential phenomenon in biological processes. In this article, we present a computational model to predict paths of maximum information transfer between active and allosteric sites. In this information theoretic study, we use mutual information as the measure of information transfer, where transition probability of information from one residue to its contacting neighbors is proportional to the magnitude of mutual information between the two residues. Starting from a given residue and using a Hidden Markov Model, we successively determine the neighboring residues that eventually lead to a path of optimum information transfer. The Gaussian approximation of mutual information between residue pairs is adopted. The limits of validity of this approximation are discussed in terms of a nonlinear theory of mutual information and its reduction to the Gaussian form. Results Predictions of the model are tested on six widely studied cases, CheY Bacterial Chemotaxis, B-cell Lymphoma extra-large (Bcl-xL), Human proline isomerase cyclophilin A (CypA), Dihydrofolate reductase (DHFR), HRas GTPase and Caspase-1. The communication transmission rendering the propagation of local fluctuations from the active sites throughout the structure in multiple paths correlate well with the known experimental data. Distinct paths originating from the active site may likely represent a multi functionality such as involving more than one allosteric site and/or pre-existence of some other functional states. Our model is computationally fast and simple and can give allosteric communication pathways, which are crucial for the understanding and control of protein functionality. Supplementary information are available at Bioinformatics online.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue14
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.volume38
dc.identifier.doi10.1093/bioinformatics/btac380
dc.identifier.eissn1460-2059
dc.identifier.issn1367-4803
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85130251086
dc.identifier.urihttp://dx.doi.org/10.1093/bioinformatics/btac380
dc.identifier.urihttps://hdl.handle.net/20.500.14288/14702
dc.identifier.wos813689900001
dc.languageEnglish
dc.sourceBioinformatics
dc.subjectBiochemical research methods
dc.subjectBiochemistry
dc.subjectMolecular biology
dc.subjectMathematical
dc.subjectComputational biology
dc.titlePrediction of allosteric communication pathways in proteins
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0002-2496-6059
local.contributor.kuauthorErman, Burak
relation.isOrgUnitOfPublicationc747a256-6e0c-4969-b1bf-3b9f2f674289
relation.isOrgUnitOfPublication.latestForDiscoveryc747a256-6e0c-4969-b1bf-3b9f2f674289

Files