Publication:
Multivariate density-based 3D shape Descriptors

dc.contributor.coauthorAkgül, Ceyhun Burak
dc.contributor.coauthorSankur, Bülent
dc.contributor.coauthorSchmitt, Francis
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorYemez, Yücel
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2024-11-09T23:22:18Z
dc.date.issued2007
dc.description.abstractWe address the 3D object retrieval problem using multivariate density-based shape descriptors. Considering the fusion of first and second order local surface information, we construct multivariate features up to five dimensions and process them by the kernel density estimation methodology to obtain descriptor vectors. We can compute these descriptors very efficiently using the fast Gauss transform algorithm. We also make use of descriptor level information fusion by concatenating descriptor vectors to increase their discrimination power further To render the resulting descriptors storage-wise efficient, we develop two analytical tools, marginalization and probability density suppression, for descriptor dimensionality reduction. The experiments on two different databases, Princeton Shape Benchmark and Sculpteur show that, boosted with both feature level and descriptor level information fusion, and powered with fast computational schemes, the density-based shape description firamework enables effective and efficient 3D object retrieval.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.identifier.doi10.1109/SMI.2007.27
dc.identifier.isbn978-0-7695-2815-1
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-38649107035
dc.identifier.urihttps://doi.org/10.1109/SMI.2007.27
dc.identifier.urihttps://hdl.handle.net/20.500.14288/11051
dc.identifier.wos248622300001
dc.language.isoeng
dc.publisherIEEE Computer Soc
dc.relation.ispartofIEEE International Conference on Shape Modeling and Applications 2007, Proceedings
dc.subjectComputer science, software engineering
dc.titleMultivariate density-based 3D shape Descriptors
dc.typeConference Proceeding
dspace.entity.typePublication
local.contributor.kuauthorYemez, Yücel
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Computer Engineering
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files