Publication:
A multitask multiple kernel learning algorithm for survival analysis with application to cancer biology

dc.contributor.departmentDepartment of Industrial Engineering
dc.contributor.departmentDepartment of Industrial Engineering
dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Industrial Engineering
dc.contributor.kuauthorGönen, Mehmet
dc.contributor.kuauthorOğuz, Ceyda
dc.contributor.kuauthorDereli, Onur
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofilePhD Student
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokid237468
dc.contributor.yokid6033
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T23:21:41Z
dc.date.issued2019
dc.description.abstractPredictive performance of machine learning algorithms on related problems can be improved using multitask learning approaches. Rather than performing survival analysis on each data set to predict survival times of cancer patients, we developed a novel multitask approach based on multiple kernel learning (MKL). Our multitask MKL algorithm both works on multiple cancer data sets and integrates cancer-related pathways/gene sets into survival analysis. We tested our algorithm, which is named as Path2MSurv, on the Cancer Genome Atlas data sets analyzing gene expression profiles of 7, 655 patients from 20 cancer types together with cancer-specific pathway/gene set collections. Path2MSurv obtained better or comparable predictive performance when bench-marked against random survival forest, survival support vector machine, and single-task variant of our algorithm. Path2MSurv has the ability to identify key pathways/gene sets in predicting survival times of patients from different cancer types.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.volume2019-June
dc.identifier.doiN/A
dc.identifier.isbn9781-5108-8698-8
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85077989480&partnerID=40&md5=526d6e0c5f36150e8d99ecd9a6b37238
dc.identifier.scopus2-s2.0-85077989480
dc.identifier.urihttps://hdl.handle.net/20.500.14288/10938
dc.identifier.wos684034301072
dc.keywordsBioinformatics
dc.keywordsDiseases
dc.keywordsGene expression
dc.keywordsMachine learning
dc.keywordsSupport vector machines
dc.keywordsCancer data sets
dc.keywordsCancer patients
dc.keywordsGene expression profiles
dc.keywordsMultiple Kernel Learning
dc.keywordsMultitask learning
dc.keywordsPredictive performance
dc.keywordsSurvival analysis
dc.keywordsSurvival forests
dc.keywordsLearning algorithms
dc.languageEnglish
dc.publisherInternational Machine Learning Society (IMLS)
dc.source36th International Conference on Machine Learning, ICML 2019
dc.subjectComputer Science
dc.subjectArtificial intelligence
dc.titleA multitask multiple kernel learning algorithm for survival analysis with application to cancer biology
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0002-2483-075X
local.contributor.authorid0000-0003-0994-1758
local.contributor.authorid0000-0002-2759-2793
local.contributor.kuauthorGönen, Mehmet
local.contributor.kuauthorOğuz, Ceyda
local.contributor.kuauthorDereli, Onur
relation.isOrgUnitOfPublicationd6d00f52-d22d-4653-99e7-863efcd47b4a
relation.isOrgUnitOfPublication.latestForDiscoveryd6d00f52-d22d-4653-99e7-863efcd47b4a

Files