Publication: Adaptive mixture methods based on Bregman divergences
dc.contributor.coauthor | N/A | |
dc.contributor.department | Department of Electrical and Electronics Engineering | |
dc.contributor.department | Graduate School of Sciences and Engineering | |
dc.contributor.kuauthor | Dönmez, Mehmet Ali | |
dc.contributor.kuauthor | İnan, Hüseyin Atahan | |
dc.contributor.kuauthor | Kozat, Süleyman Serdar | |
dc.contributor.schoolcollegeinstitute | College of Engineering | |
dc.contributor.schoolcollegeinstitute | GRADUATE SCHOOL OF SCIENCES AND ENGINEERING | |
dc.date.accessioned | 2024-11-09T23:21:43Z | |
dc.date.issued | 2012 | |
dc.description.abstract | We investigate affinely constrained mixture methods adaptively combining outputs of m constituent filters running in parallel to model a desired signal. We use Bregman divergences and obtain multiplicative updates to train these linear combination weights under the affine constraints. We use the unnormalized relative entropy and the relative entropy that produce the exponentiated gradient update with unnormalized weights (EGU) and the exponentiated gradient update with positive and negative weights (EG), respectively. We carry out the mean and the mean-square transient analysis of the affinely constrained mixtures of m filters using the EGU or EG algorithms. We compare performances of different algorithms through our simulations and illustrate the accuracy of our results. | |
dc.description.indexedby | WOS | |
dc.description.indexedby | Scopus | |
dc.description.openaccess | YES | |
dc.description.publisherscope | International | |
dc.description.sponsoredbyTubitakEu | N/A | |
dc.description.sponsorship | Inst. Electr. Electron. Eng. Signal Process. Soc. | |
dc.identifier.doi | 10.1109/ICASSP.2012.6288740 | |
dc.identifier.isbn | 9781-4673-0046-9 | |
dc.identifier.issn | 1520-6149 | |
dc.identifier.quartile | N/A | |
dc.identifier.scopus | 2-s2.0-84867591120 | |
dc.identifier.uri | https://doi.org/10.1109/ICASSP.2012.6288740 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/10943 | |
dc.identifier.wos | 312171000009 | |
dc.keywords | Affine constraints | |
dc.keywords | Bregman divergences | |
dc.keywords | Desired signal | |
dc.keywords | Linear combinations | |
dc.keywords | M-filters | |
dc.keywords | Mean-square | |
dc.keywords | Mixture method | |
dc.keywords | Multiplicative updates | |
dc.keywords | Relative entropy | |
dc.keywords | Running-in | |
dc.keywords | Algorithms | |
dc.keywords | Entropy | |
dc.keywords | Signal processing | |
dc.keywords | Mixtures | |
dc.language.iso | eng | |
dc.publisher | IEEE | |
dc.relation.ispartof | ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings | |
dc.subject | Engineering | |
dc.subject | Electrical and electronics engineering | |
dc.title | Adaptive mixture methods based on Bregman divergences | |
dc.type | Conference Proceeding | |
dspace.entity.type | Publication | |
local.contributor.kuauthor | Kozat, Süleyman Serdar | |
local.contributor.kuauthor | Dönmez, Mehmet Ali | |
local.contributor.kuauthor | İnan, Hüseyin Atahan | |
local.publication.orgunit1 | College of Engineering | |
local.publication.orgunit1 | GRADUATE SCHOOL OF SCIENCES AND ENGINEERING | |
local.publication.orgunit2 | Department of Electrical and Electronics Engineering | |
local.publication.orgunit2 | Graduate School of Sciences and Engineering | |
relation.isOrgUnitOfPublication | 21598063-a7c5-420d-91ba-0cc9b2db0ea0 | |
relation.isOrgUnitOfPublication | 3fc31c89-e803-4eb1-af6b-6258bc42c3d8 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 21598063-a7c5-420d-91ba-0cc9b2db0ea0 | |
relation.isParentOrgUnitOfPublication | 8e756b23-2d4a-4ce8-b1b3-62c794a8c164 | |
relation.isParentOrgUnitOfPublication | 434c9663-2b11-4e66-9399-c863e2ebae43 | |
relation.isParentOrgUnitOfPublication.latestForDiscovery | 8e756b23-2d4a-4ce8-b1b3-62c794a8c164 |