Publication:
Personalized federated learning for predicting disability progression in multiple sclerosis using real-world routine clinical data

dc.contributor.coauthorPirmani, Ashkan
dc.contributor.coauthorDe Brouwer, Edward
dc.contributor.coauthorArany, Adam
dc.contributor.coauthorOldenhof, Martijn
dc.contributor.coauthorPassemiers, Antoine
dc.contributor.coauthorFaes, Axel
dc.contributor.coauthorKalincik, Tomas
dc.contributor.coauthorOzakbas, Serkan
dc.contributor.coauthorGouider, Riadh
dc.contributor.coauthorWillekens, Barbara
dc.contributor.coauthorHorakova, Dana
dc.contributor.coauthorHavrdova, Eva Kubala
dc.contributor.coauthorPatti, Francesco
dc.contributor.coauthorPrat, Alexandre
dc.contributor.coauthorLugaresi, Alessandra
dc.contributor.coauthorTomassini, Valentina
dc.contributor.coauthorGrammond, Pierre
dc.contributor.coauthorCartechini, Elisabetta
dc.contributor.coauthorRoos, Izanne
dc.contributor.coauthorBoz, Cavit
dc.contributor.coauthorAlroughani, Raed
dc.contributor.coauthorAmato, Maria Pia
dc.contributor.coauthorBuzzard, Katherine
dc.contributor.coauthorLechner-Scott, Jeannette
dc.contributor.coauthorGuimaraes, Joana
dc.contributor.coauthorSolaro, Claudio
dc.contributor.coauthorGerlach, Oliver
dc.contributor.coauthorSoysal, Aysun
dc.contributor.coauthorKuhle, Jens
dc.contributor.coauthorSanchez-Menoyo, Jose Luis
dc.contributor.coauthorSpitaleri, Daniele
dc.contributor.coauthorCsepany, Tunde
dc.contributor.coauthorVan Wijmeersch, Bart
dc.contributor.coauthorAmpapa, Radek
dc.contributor.coauthorPrevost, Julie
dc.contributor.coauthorKhoury, Samia J.
dc.contributor.coauthorVan Pesch, Vincent
dc.contributor.coauthorJohn, Nevin
dc.contributor.coauthorMaimone, Davide
dc.contributor.coauthorWeinstock-Guttman, Bianca
dc.contributor.coauthorLaureys, Guy
dc.contributor.coauthorMccombe, Pamela
dc.contributor.coauthorBlanco, Yolanda
dc.contributor.coauthorAltintas, Ayse
dc.contributor.coauthorAl-Asmi, Abdullah
dc.contributor.coauthorGarber, Justin
dc.contributor.coauthorvan der Walt, Anneke
dc.contributor.coauthorButzkueven, Helmut
dc.contributor.coauthorde Gans, Koen
dc.contributor.coauthorRozsa, Csilla
dc.contributor.coauthorTaylor, Bruce
dc.contributor.coauthorAl-Harbi, Talal
dc.contributor.coauthorSas, Attila
dc.contributor.coauthorRajda, Cecilia
dc.contributor.coauthorGray, Orla
dc.contributor.coauthorDecoo, Danny
dc.contributor.coauthorCarroll, William M.
dc.contributor.coauthorKermode, Allan G.
dc.contributor.coauthorFabis-Pedrini, Marzena
dc.contributor.coauthorMason, Deborah
dc.contributor.coauthorPerez-Sempere, Angel
dc.contributor.coauthorSimu, Mihaela
dc.contributor.coauthorShuey, Neil
dc.contributor.coauthorSinghal, Bhim
dc.contributor.coauthorCauchi, Marija
dc.contributor.coauthorHardy, Todd A.
dc.contributor.coauthorRamanathan, Sudarshini
dc.contributor.coauthorLalive, Patrice
dc.contributor.coauthorSirbu, Carmen-Adella
dc.contributor.coauthorHughes, Stella
dc.contributor.coauthorCastillo Trivino, Tamara
dc.contributor.coauthorPeeters, Liesbet M.
dc.contributor.coauthorMoreau, Yves
dc.contributor.departmentSchool of Medicine
dc.contributor.departmentKUTTAM (Koç University Research Center for Translational Medicine)
dc.contributor.kuauthorFaculty Member, Altıntaş, Ayşe
dc.contributor.schoolcollegeinstituteSCHOOL OF MEDICINE
dc.contributor.schoolcollegeinstituteResearch Center
dc.date.accessioned2025-09-10T04:59:58Z
dc.date.available2025-09-09
dc.date.issued2025
dc.description.abstractEarly prediction of disability progression in multiple sclerosis (MS) remains challenging despite its critical importance for therapeutic decision-making. We present the first systematic evaluation of personalized federated learning (PFL) for 2-year MS disability progression prediction, leveraging multi-center real-world data from over 26,000 patients. While conventional federated learning (FL) enables privacy-aware collaborative modeling, it remains vulnerable to institutional data heterogeneity. PFL overcomes this challenge by adapting shared models to local data distributions without compromising privacy. We evaluated two personalization strategies: a novel AdaptiveDualBranchNet architecture with selective parameter sharing, and personalized fine-tuning of global models, benchmarked against centralized and client-specific approaches. Baseline FL underperformed relative to personalized methods, whereas personalization significantly improved performance, with personalized FedProx and FedAVG achieving ROC-AUC scores of 0.8398 +/- 0.0019 and 0.8384 +/- 0.0014, respectively. These findings establish personalization as critical for scalable, privacy-aware clinical prediction models and highlight its potential to inform earlier intervention strategies in MS and beyond.
dc.description.fulltextNo
dc.description.harvestedfromManual
dc.description.indexedbyWOS
dc.description.indexedbyPubMed
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipVLAIO PM: Augmenting Therapeutic Effectiveness through Novel Analytics [HBC.2019.2528]; Research Council KU Leuven [C14/22/125, C14/18/092, CELSA/21/019]; Flemish Government [S003422N, I002819N]; FWO-SB grant; Novartis; Biogen; Roche; FWO (Research Foundation Flanders); Fonds D.V. (Ligue Nationale Belge de la Sclerose en Plaques, Fondation Roi Baudouin); Charles University; Petre Foundation; Project National Institute for Neurological Research (Program EXCELES) - European Union-Next Generation EU [LX22NPO5107]; Brain Foundation; General University Hospital in Prague [MH CZ-DRO-VFN64165]; Royal Australasian College of Physicians; Biogen Idec; University of Sydney; Sanofi Genzyme; NHMRC Investigator Grant; Alexion; Almirall; Merck; Bristol; Novartis; Roche; FISM; Reload Association (Onlus); Italian Health Minister; University of Catania; Merck Serono; Teva; Czech Ministry of Education; Bristol Myers Squibb; Janssen; Sanofi-Genzyme; Sanofi/GenzymeOG; Viatris; Lundbeck; Genzyme; EMD Serono; Celgene; MS Australia; Trish MS Research Foundation; Bayer-Schering; Teva; Hikma; Teva Neurosciences; ATARA Pharmaceuticals; Sanofi Aventis; Merck Healthcare KGaA (Darmstadt, Germany); Bristol Meyer Squibb; Novartis Pharma; Neuraxpharm; Eisai; Swiss MS Society; Swiss National Research Foundation [320030\_189140/1]; University of Basel; Progressive MS Alliance; Alnylam; Immunic; Neurogenesis; Octave Bioscience; Quanterix; Sanofi; Stata DX; Sumaira Foundation; CSL; BMS; MedDay; NHMRC; Horizon/Amgen; National Health and Medical Research Council (NHMRC, Australia); [GNT2008339]
dc.description.volume8
dc.identifier.doi10.1038/s41746-025-01788-8
dc.identifier.eissn2398-6352
dc.identifier.embargoNo
dc.identifier.issn2398-6352
dc.identifier.issue1
dc.identifier.quartileN/A
dc.identifier.urihttps://doi.org/10.1038/s41746-025-01788-8
dc.identifier.urihttps://hdl.handle.net/20.500.14288/30432
dc.identifier.wos001536298500003
dc.language.isoeng
dc.publisherNature Portfolio
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofNpj digital medicine
dc.subjectHealth Care Sciences & Services
dc.subjectMedical Informatics
dc.titlePersonalized federated learning for predicting disability progression in multiple sclerosis using real-world routine clinical data
dc.typeJournal Article
dspace.entity.typePublication
relation.isOrgUnitOfPublicationd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isOrgUnitOfPublication91bbe15d-017f-446b-b102-ce755523d939
relation.isOrgUnitOfPublication.latestForDiscoveryd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isParentOrgUnitOfPublication17f2dc8e-6e54-4fa8-b5e0-d6415123a93e
relation.isParentOrgUnitOfPublicationd437580f-9309-4ecb-864a-4af58309d287
relation.isParentOrgUnitOfPublication.latestForDiscovery17f2dc8e-6e54-4fa8-b5e0-d6415123a93e

Files