Publication: Personalized federated learning for predicting disability progression in multiple sclerosis using real-world routine clinical data
| dc.contributor.coauthor | Pirmani, Ashkan | |
| dc.contributor.coauthor | De Brouwer, Edward | |
| dc.contributor.coauthor | Arany, Adam | |
| dc.contributor.coauthor | Oldenhof, Martijn | |
| dc.contributor.coauthor | Passemiers, Antoine | |
| dc.contributor.coauthor | Faes, Axel | |
| dc.contributor.coauthor | Kalincik, Tomas | |
| dc.contributor.coauthor | Ozakbas, Serkan | |
| dc.contributor.coauthor | Gouider, Riadh | |
| dc.contributor.coauthor | Willekens, Barbara | |
| dc.contributor.coauthor | Horakova, Dana | |
| dc.contributor.coauthor | Havrdova, Eva Kubala | |
| dc.contributor.coauthor | Patti, Francesco | |
| dc.contributor.coauthor | Prat, Alexandre | |
| dc.contributor.coauthor | Lugaresi, Alessandra | |
| dc.contributor.coauthor | Tomassini, Valentina | |
| dc.contributor.coauthor | Grammond, Pierre | |
| dc.contributor.coauthor | Cartechini, Elisabetta | |
| dc.contributor.coauthor | Roos, Izanne | |
| dc.contributor.coauthor | Boz, Cavit | |
| dc.contributor.coauthor | Alroughani, Raed | |
| dc.contributor.coauthor | Amato, Maria Pia | |
| dc.contributor.coauthor | Buzzard, Katherine | |
| dc.contributor.coauthor | Lechner-Scott, Jeannette | |
| dc.contributor.coauthor | Guimaraes, Joana | |
| dc.contributor.coauthor | Solaro, Claudio | |
| dc.contributor.coauthor | Gerlach, Oliver | |
| dc.contributor.coauthor | Soysal, Aysun | |
| dc.contributor.coauthor | Kuhle, Jens | |
| dc.contributor.coauthor | Sanchez-Menoyo, Jose Luis | |
| dc.contributor.coauthor | Spitaleri, Daniele | |
| dc.contributor.coauthor | Csepany, Tunde | |
| dc.contributor.coauthor | Van Wijmeersch, Bart | |
| dc.contributor.coauthor | Ampapa, Radek | |
| dc.contributor.coauthor | Prevost, Julie | |
| dc.contributor.coauthor | Khoury, Samia J. | |
| dc.contributor.coauthor | Van Pesch, Vincent | |
| dc.contributor.coauthor | John, Nevin | |
| dc.contributor.coauthor | Maimone, Davide | |
| dc.contributor.coauthor | Weinstock-Guttman, Bianca | |
| dc.contributor.coauthor | Laureys, Guy | |
| dc.contributor.coauthor | Mccombe, Pamela | |
| dc.contributor.coauthor | Blanco, Yolanda | |
| dc.contributor.coauthor | Altintas, Ayse | |
| dc.contributor.coauthor | Al-Asmi, Abdullah | |
| dc.contributor.coauthor | Garber, Justin | |
| dc.contributor.coauthor | van der Walt, Anneke | |
| dc.contributor.coauthor | Butzkueven, Helmut | |
| dc.contributor.coauthor | de Gans, Koen | |
| dc.contributor.coauthor | Rozsa, Csilla | |
| dc.contributor.coauthor | Taylor, Bruce | |
| dc.contributor.coauthor | Al-Harbi, Talal | |
| dc.contributor.coauthor | Sas, Attila | |
| dc.contributor.coauthor | Rajda, Cecilia | |
| dc.contributor.coauthor | Gray, Orla | |
| dc.contributor.coauthor | Decoo, Danny | |
| dc.contributor.coauthor | Carroll, William M. | |
| dc.contributor.coauthor | Kermode, Allan G. | |
| dc.contributor.coauthor | Fabis-Pedrini, Marzena | |
| dc.contributor.coauthor | Mason, Deborah | |
| dc.contributor.coauthor | Perez-Sempere, Angel | |
| dc.contributor.coauthor | Simu, Mihaela | |
| dc.contributor.coauthor | Shuey, Neil | |
| dc.contributor.coauthor | Singhal, Bhim | |
| dc.contributor.coauthor | Cauchi, Marija | |
| dc.contributor.coauthor | Hardy, Todd A. | |
| dc.contributor.coauthor | Ramanathan, Sudarshini | |
| dc.contributor.coauthor | Lalive, Patrice | |
| dc.contributor.coauthor | Sirbu, Carmen-Adella | |
| dc.contributor.coauthor | Hughes, Stella | |
| dc.contributor.coauthor | Castillo Trivino, Tamara | |
| dc.contributor.coauthor | Peeters, Liesbet M. | |
| dc.contributor.coauthor | Moreau, Yves | |
| dc.contributor.department | School of Medicine | |
| dc.contributor.department | KUTTAM (Koç University Research Center for Translational Medicine) | |
| dc.contributor.kuauthor | Faculty Member, Altıntaş, Ayşe | |
| dc.contributor.schoolcollegeinstitute | SCHOOL OF MEDICINE | |
| dc.contributor.schoolcollegeinstitute | Research Center | |
| dc.date.accessioned | 2025-09-10T04:59:58Z | |
| dc.date.available | 2025-09-09 | |
| dc.date.issued | 2025 | |
| dc.description.abstract | Early prediction of disability progression in multiple sclerosis (MS) remains challenging despite its critical importance for therapeutic decision-making. We present the first systematic evaluation of personalized federated learning (PFL) for 2-year MS disability progression prediction, leveraging multi-center real-world data from over 26,000 patients. While conventional federated learning (FL) enables privacy-aware collaborative modeling, it remains vulnerable to institutional data heterogeneity. PFL overcomes this challenge by adapting shared models to local data distributions without compromising privacy. We evaluated two personalization strategies: a novel AdaptiveDualBranchNet architecture with selective parameter sharing, and personalized fine-tuning of global models, benchmarked against centralized and client-specific approaches. Baseline FL underperformed relative to personalized methods, whereas personalization significantly improved performance, with personalized FedProx and FedAVG achieving ROC-AUC scores of 0.8398 +/- 0.0019 and 0.8384 +/- 0.0014, respectively. These findings establish personalization as critical for scalable, privacy-aware clinical prediction models and highlight its potential to inform earlier intervention strategies in MS and beyond. | |
| dc.description.fulltext | No | |
| dc.description.harvestedfrom | Manual | |
| dc.description.indexedby | WOS | |
| dc.description.indexedby | PubMed | |
| dc.description.publisherscope | International | |
| dc.description.readpublish | N/A | |
| dc.description.sponsoredbyTubitakEu | EU | |
| dc.description.sponsorship | VLAIO PM: Augmenting Therapeutic Effectiveness through Novel Analytics [HBC.2019.2528]; Research Council KU Leuven [C14/22/125, C14/18/092, CELSA/21/019]; Flemish Government [S003422N, I002819N]; FWO-SB grant; Novartis; Biogen; Roche; FWO (Research Foundation Flanders); Fonds D.V. (Ligue Nationale Belge de la Sclerose en Plaques, Fondation Roi Baudouin); Charles University; Petre Foundation; Project National Institute for Neurological Research (Program EXCELES) - European Union-Next Generation EU [LX22NPO5107]; Brain Foundation; General University Hospital in Prague [MH CZ-DRO-VFN64165]; Royal Australasian College of Physicians; Biogen Idec; University of Sydney; Sanofi Genzyme; NHMRC Investigator Grant; Alexion; Almirall; Merck; Bristol; Novartis; Roche; FISM; Reload Association (Onlus); Italian Health Minister; University of Catania; Merck Serono; Teva; Czech Ministry of Education; Bristol Myers Squibb; Janssen; Sanofi-Genzyme; Sanofi/GenzymeOG; Viatris; Lundbeck; Genzyme; EMD Serono; Celgene; MS Australia; Trish MS Research Foundation; Bayer-Schering; Teva; Hikma; Teva Neurosciences; ATARA Pharmaceuticals; Sanofi Aventis; Merck Healthcare KGaA (Darmstadt, Germany); Bristol Meyer Squibb; Novartis Pharma; Neuraxpharm; Eisai; Swiss MS Society; Swiss National Research Foundation [320030\_189140/1]; University of Basel; Progressive MS Alliance; Alnylam; Immunic; Neurogenesis; Octave Bioscience; Quanterix; Sanofi; Stata DX; Sumaira Foundation; CSL; BMS; MedDay; NHMRC; Horizon/Amgen; National Health and Medical Research Council (NHMRC, Australia); [GNT2008339] | |
| dc.description.volume | 8 | |
| dc.identifier.doi | 10.1038/s41746-025-01788-8 | |
| dc.identifier.eissn | 2398-6352 | |
| dc.identifier.embargo | No | |
| dc.identifier.issn | 2398-6352 | |
| dc.identifier.issue | 1 | |
| dc.identifier.quartile | N/A | |
| dc.identifier.uri | https://doi.org/10.1038/s41746-025-01788-8 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14288/30432 | |
| dc.identifier.wos | 001536298500003 | |
| dc.language.iso | eng | |
| dc.publisher | Nature Portfolio | |
| dc.relation.affiliation | Koç University | |
| dc.relation.collection | Koç University Institutional Repository | |
| dc.relation.ispartof | Npj digital medicine | |
| dc.subject | Health Care Sciences & Services | |
| dc.subject | Medical Informatics | |
| dc.title | Personalized federated learning for predicting disability progression in multiple sclerosis using real-world routine clinical data | |
| dc.type | Journal Article | |
| dspace.entity.type | Publication | |
| relation.isOrgUnitOfPublication | d02929e1-2a70-44f0-ae17-7819f587bedd | |
| relation.isOrgUnitOfPublication | 91bbe15d-017f-446b-b102-ce755523d939 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | d02929e1-2a70-44f0-ae17-7819f587bedd | |
| relation.isParentOrgUnitOfPublication | 17f2dc8e-6e54-4fa8-b5e0-d6415123a93e | |
| relation.isParentOrgUnitOfPublication | d437580f-9309-4ecb-864a-4af58309d287 | |
| relation.isParentOrgUnitOfPublication.latestForDiscovery | 17f2dc8e-6e54-4fa8-b5e0-d6415123a93e |
