Publication:
Variational formulas and disorder regimes of random walks in random potentials

dc.contributor.coauthorRassoul-Agha, Firas
dc.contributor.coauthorSeppalainen, Timo
dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorYılmaz, Atilla
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T13:24:47Z
dc.date.issued2017
dc.description.abstractWe give two variational formulas (qVar1) and (qVar2) for the quenched free energy of a random walk in random potential (RWRP) when (i) the underlying walk is directed or undirected, (ii) the environment is stationary and ergodic, and (iii) the potential is allowed to depend on the next step of the walk which covers random walk in random environment (RWRE). In the directed i.i.d. case, we also give two variational formulas (aVar1) and (aVar2) for the annealed free energy of RWRP. These four formulas are the same except that they involve infima over different sets, and the first two are modified versions of a previously known variational formula (qVar0) for which we provide a short alternative proof. Then, we show that (qVar0) always has a minimizer, (aVar2) never has any minimizers unless the RWRP is an RWRE, and (aVar1) has a minimizer if and only if the RWRP is in the weak disorder regime. In the latter case, the minimizer of (aVar1) is unique and it is also the unique minimizer of (qVar1), but (qVar2) has no minimizers except for RWRE. In the case of strong disorder, we give a sufficient condition for the nonexistence of minimizers of (qVar1) and (qVar2) which is satisfied for the log-gamma directed polymer with a sufficiently small parameter. We end with a conjecture which implies that (qVar1) and (qVar2) have no minimizers under very strong disorder.
dc.description.fulltextYES
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.issue1
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU
dc.description.sponsorshipNational Science Foundation
dc.description.sponsorshipSimons Foundation
dc.description.sponsorshipWisconsin Alumni Research Foundation
dc.description.sponsorshipEuropean Union (EU)
dc.description.versionPublisher version
dc.description.volume23
dc.identifier.doi10.3150/15-BEJ747
dc.identifier.eissn1573-9759
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR00474
dc.identifier.issn1350-7265
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-84991743373
dc.identifier.urihttps://hdl.handle.net/20.500.14288/3424
dc.identifier.wos389565500014
dc.keywordsDirected polymer
dc.keywordsKPZ universality
dc.keywordsLarge deviation
dc.keywordsQuenched free energy
dc.keywordsRandom environment
dc.keywordsRandom potential
dc.keywordsRandom walk
dc.keywordsStrong disorder
dc.keywordsVariational formula
dc.keywordsVery strong disorder
dc.keywordsWeak disorder
dc.keywordsQuenched large deviations
dc.keywordsJacobi-Bellman equations
dc.keywordsLog-gamma polymer
dc.keywordsDirected polymers
dc.keywordsFree-energy
dc.keywordsDiffusion
dc.keywordsHomogenization
dc.keywordsLocalization
dc.keywordsExponents
dc.language.isoeng
dc.publisherInternational Statistical Institute (ISI)
dc.relation.grantnoDMS-14-07574
dc.relation.grantnoDMS-13-06777
dc.relation.grantno306576
dc.relation.grantnoPCIG11-GA-2012-322078
dc.relation.ispartofBernoulli
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/483
dc.subjectMathemetics
dc.subjectStatistics and probability
dc.titleVariational formulas and disorder regimes of random walks in random potentials
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorYılmaz, Atilla
local.publication.orgunit1College of Sciences
local.publication.orgunit2Department of Mathematics
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
483.pdf
Size:
371.24 KB
Format:
Adobe Portable Document Format