Publication:
Least area planes in hyperbolic 3-space are properly embedded

dc.contributor.departmentDepartment of Mathematics
dc.contributor.kuauthorCoşkunüzer, Barış
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Mathematics
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2024-11-09T22:59:43Z
dc.date.issued2009
dc.description.abstractWe show that if Sigma is an embedded least area (area minimizing) plane in H(3) whose asymptotic boundary is a simple closed curve with at least one smooth point, then Sigma is properly embedded in H(3).
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue1
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsorshipNSF [DMS-0603532]
dc.description.sponsorshipTUBITAK[107T7642] The author is partially supported by NSF Grant DMS-0603532 and TUBITAKGrant 107T7642.
dc.description.volume58
dc.identifier.doi10.1512/iumj.2009.58.3447
dc.identifier.issn0022-2518
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-67249099761
dc.identifier.urihttp://dx.doi.org/10.1512/iumj.2009.58.3447
dc.identifier.urihttps://hdl.handle.net/20.500.14288/7944
dc.identifier.wos264908900012
dc.keywordsAsymptotic plateau problem
dc.keywordsProperly embedded
dc.keywordsLeast area plane space
dc.keywordsHypersurfaces
dc.keywordsManifolds
dc.keywordsRegularity
dc.keywordsExistence
dc.keywordsSurfaces
dc.keywordsTopology
dc.languageEnglish
dc.publisherIndiana Univ Math Journal
dc.sourceIndiana University Mathematics Journal
dc.subjectMathematics
dc.titleLeast area planes in hyperbolic 3-space are properly embedded
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0001-7462-8819
local.contributor.kuauthorCoşkunüzer, Barış
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe

Files