Publication: Femtosecond pulse generation from a Ti3+: sapphire laser near 800 nm with voltage reconfigurable graphene saturable absorbers
Program
KU-Authors
KU Authors
Co-Authors
Ozharar, Sarper
Kakenov, Nurbek
Kocabaş, Coşkun
Advisor
Publication Date
Language
English
Type
Journal Title
Journal ISSN
Volume Title
Abstract
We experimentally show that a voltage-controlled graphene-gold supercapacitor saturable absorber (VCG-gold-SA) can be operated as a fast saturable absorber with adjustable linear absorption at wavelengths as low as 795 nm. This was made possible by the use of a novel supercapacitor architecture, consisting of a high-dielectric electrolyte sandwiched between a graphene and a gold electrode. The high-dielectric electrolyte allowed continuous, reversible adjustment of the Fermi level and, hence, the optical loss of the VCG-gold-SA up to the visible wavelengths at low bias voltages of the order of a few volts (0-2 V). The fast saturable absorber action of the VCG-gold-SA and the bias-dependent reduction of its loss were successfully demonstrated inside a femtosecond Ti3+ : sapphire laser operating near 800 nm. Dispersion compensation was employed by using dispersion control mirrors and a prism pair. At a bias voltage of 1.2 V, the laser operated with improved power performance in comparison with that at zero bias, and the VCG-gold-SA initiated the generation of nearly transform-limited pulses as short as 48 fs at a pulse repetition rate of 131.7MHz near 830 nm. To the best of our knowledge, this represents the shortest wavelength where a VCG-gold-SA has been employed as a mode locker with adjustable loss.
Source:
Optics Letters
Publisher:
Optica Publishing Group
Keywords:
Subject
Optics