Publication: Superfluid-Mott-insulator transition in the spin-orbit-coupled Bose-Hubbard model
Files
Program
KU-Authors
KU Authors
Co-Authors
Publication Date
Language
Type
Embargo Status
NO
Journal Title
Journal ISSN
Volume Title
Alternative Title
Abstract
We consider a square optical lattice in two dimensions and study the effects of both the strength and symmetry of spin-orbit coupling and Zeeman field on the ground-state, i.e., Mott-insulator (MI) and superfluid (SF), phases and phase diagram, i.e., MI-SF phase-transition boundary, of the two-component Bose-Hubbard model. In particular, based on a variational Gutzwiller ansatz, our numerical calculations show that the spin-orbit-coupled SF phase is a nonuniform (twisted) one, with its phase (but not the magnitude) of the order parameter modulating from site to site. Fully analytical insights into the numerical results are also given.
Source
Publisher
American Physical Society (APS)
Subject
Optics, Physics
Citation
Has Part
Source
Physical Review A
Book Series Title
Edition
DOI
10.1103/PhysRevA.89.043603